K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4 2017

8(3x-2)-10x=2(4-7x)+15

\(\Leftrightarrow24x-16-10x=8-14x+15\)

\(\Leftrightarrow14x-16=-14x+23\)

\(\Leftrightarrow14x+14x=23+16\)

\(\Leftrightarrow28x=39\)

\(\Leftrightarrow x=\frac{39}{28}\)

16 tháng 4 2017

8(3x-2)-10x = 2(4-7x)+15

24x - 16 - 10x = 8 - 14x + 15

14x - 16 = 23 - 14x

14x + 14x = 23 + 16

28x = 39

x = 39:28

x = 39/28

27 tháng 11 2018

\(A=\frac{x^3-3x^2-7x-15}{x^5-x^4-10x^3-38x^2-51x-45}\)

\(=\frac{x^2\left(x-5\right)+2x\left(x-5\right)+3\left(x-5\right)}{x^4\left(x-5\right)+4x^3\left(x-5\right)+10x^2\left(x-5\right)+12x\left(x-5\right)+9\left(x-5\right)}\)

\(=\frac{\left(x-5\right)\left(x^2+2x+3\right)}{\left(x-5\right)\left(x^4+4x^3+10x^2+12x+9\right)}\)

\(=\frac{x^2+2x+3}{x^4+4x^3+10x^2+12x+9}\)

\(=\frac{x^2+2x+3}{\left(x^2\right)^2+2.x^2.2x+\left(2x\right)^2+6x^2+12x+9}\)

\(=\frac{x^2+2x+3}{\left(x^2+2x\right)^2+2.\left(x^2+2x\right).3+3^2}\)

\(=\frac{\left(x^2+2x+3\right)}{\left(x^2+2x+3\right)^2}=\frac{1}{x^2+2x+3}\)

b, \(A=\frac{1}{x^2+2x+3}=\frac{1}{\left(x+1\right)^2+2}\le\frac{1}{2}\forall x\)

Dấu "=" xảy ra khi: \(x+1=0\Rightarrow x=-1\)

Vậy GTLN của A là \(\frac{1}{2}\) khi x = -1

23 tháng 11 2018

a.x2+5x+4

=>x2+4x+x+4

=>x(x+4)+x+4

=>(x+4)(x+1)

b. x2-7x=6

=>x2-x-6x=6

=>x(x-1)-6(x-1)

=>(x-1)(x-6)

c.x2-6x+8

=>x2-2x-4x+8

=>x(x-2)-4(x-2)

=>(x-2)(x-4)

d.x2-10x+21

=>x2-3x-7x+21

=>x(x-3)-7(x-3)

=>(x-3)(x-7)

e.Bạn xem lại í e đi xem có đúng đề không?

g.x2+2x-15

=>x2+5x-3x-15

=>x(x+5)-3(x+5)

=>(x-5)(x-3)

h.x2-3x-28

=>x2+4x-7x-28

=>x(x+4)-7(x+4)

=>(x+4)(x-7)

Nhớ tick cho mình nhé

23 tháng 11 2018

1, \(x^2+5x+4\)

\(=x^2+x+4x+4\)

\(=x\left(x+1\right)+4\left(x+1\right)\)

\(=\left(x+1\right).\left(x+4\right)\)

2, \(x^2-7x+6\)

\(=x^2-x-6x+6\)

\(=x\left(x-1\right)-6\left(x-1\right)\)

\(=\left(x+1\right)\left(x-6\right)\)

3, \(x^2-6x+8\)

\(=x^2-2x-4x+8\)

\(=x\left(x-2\right)-4\left(x-2\right)\)

\(=\left(x-2\right)\left(x-4\right)\)

4, \(x^2-10x+21\)

\(=x^2-3x-7x+21\)

\(=x\left(x-3\right)-7\left(x-3\right)\)

\(=\left(x-3\right)\left(x-7\right)\)

5, \(x^2-2x+8\)

\(=x^2+2x-4x+8\)

\(=x\left(x+2\right)-4\left(x-2\right)\)

\(=x\left(x+2\right)+4\left(x+2\right)\)

\(=\left(x+2\right)\left(x+4\right)\)

6, \(x^2+2x-15\)

\(=x^2+5x-3x-15\)

\(=x\left(x+5\right)-3\left(x+5\right)\)

\(=\left(x+5\right)\left(x-3\right)\)

7, \(x^2-3x-28\)

\(=x^2+4x-7x-28\)

\(=x\left(x+4\right)-7\left(x+4\right)\)

\(=\left(x+4\right)\left(x-7\right)\)

\(\dfrac{x}{x^2+x+1}=\dfrac{1}{4}\)

=>\(x^2+x+1=4x\)

=>\(x^2-3x+1=0\)

\(\dfrac{x^5-3x^3-10x+12}{x^4+7x^2+15}\)

\(=\dfrac{x^5-3x^4+x^3+3x^4-9x^3+3x^2+5x^3-15x^2+5x+12x^2-36x+12+21x}{x^4+7x^2+15}\)

\(=\dfrac{x^3\left(x^2-3x+1\right)+3x^2\left(x^2-3x+1\right)+5x\left(x^2-3x+1\right)+12\left(x^2-3x+1\right)+21x}{x^4+7x^2+15}\)

\(=\dfrac{21x}{x^4-3x^3+x^2+3x^3-9x^2+3x+15x^2-45x+15+42x}\)

\(=\dfrac{21x}{x^2\left(x^2-3x+1\right)+3x\left(x^2-3x+1\right)+15\left(x^2-3x+1\right)+42x}\)

\(=\dfrac{21x}{42x}=\dfrac{1}{2}\)

29 tháng 1 2022

1.

<=> \(\left[{}\begin{matrix}4-3x=0\\10-5x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4}{3}\\x=2\end{matrix}\right.\)

2.

<=>\(\left[{}\begin{matrix}7-2x=0\\4+8x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=-\dfrac{1}{2}\end{matrix}\right.\)

3.

<=>\(\left[{}\begin{matrix}9-7x=0\\11-3x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{9}{7}\\x=\dfrac{11}{3}\end{matrix}\right.\)

4.

<=>\(\left[{}\begin{matrix}7-14x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=2\end{matrix}\right.\)

5. 

<=>\(\left[{}\begin{matrix}\dfrac{7}{8}-2x=0\\3x+\dfrac{1}{3}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{16}\\x=-\dfrac{1}{9}\end{matrix}\right.\)

6,7. ko đủ điều kiện tìm

29 tháng 1 2022

Oki pạn cảm ơn

 

10 tháng 4 2020

a, 15x - 6 = 12x + 3

\(\Leftrightarrow\) 15x - 12x = 3 + 6

\(\Leftrightarrow\) 3x = 9

\(\Leftrightarrow\) x = 3

Vậy S = {3}

b, \(\frac{x+2}{2}-\frac{2x-3}{5}=10x+\frac{13}{10}\)

\(\Leftrightarrow\) \(\frac{5\left(x+2\right)}{10}-\frac{2\left(2x-3\right)}{10}=\frac{100x}{10}+\frac{13}{10}\)

\(\Leftrightarrow\) 5(x + 2) - 2(2x - 3) - 100x - 13 = 0

\(\Leftrightarrow\) 5x + 10 - 4x + 6 - 100x - 13 = 0

\(\Leftrightarrow\) -99x + 3 = 0

\(\Leftrightarrow\) x = \(\frac{1}{33}\)

Vậy S = {\(\frac{1}{33}\)}

d, (3x + 2)(4x - 5) = 0

\(\Leftrightarrow\) 3x + 2 = 0 hoặc 4x - 5 = 0

\(\Leftrightarrow\) x = \(\frac{-2}{3}\) và x = \(\frac{5}{4}\)

Vậy S = {\(\frac{-2}{3}\); \(\frac{5}{4}\)}

Phần c với phần e bạn viết vậy mình ko hiểu, bn viết lại đi!

Chúc bn học tốt!!

1 tháng 7 2017

\(A=x^2-10x+26\)

\(=\left(x^2-10x+25\right)+1\)

\(=\left(x-5\right)^2+1\ge1\)

Vậy \(Min_A=1\) khi \(x-5=0\Rightarrow x=5\)

\(B=x^2+7x+10=\left(x^2+7x+\dfrac{49}{4}\right)-\dfrac{9}{4}=\left(x+\dfrac{7}{2}\right)^2-\dfrac{9}{4}\ge\dfrac{-9}{4}\)Vậy \(Min_B=\dfrac{-9}{4}\) khi \(x+\dfrac{7}{2}=0\Rightarrow x=\dfrac{-7}{2}\)

\(C=4x^2+8x+15=4\left(x^2+2x+1\right)+11=4\left(x+1\right)^2+11\ge11\)Vậy \(Min_C=11\) khi \(x+1=0\Rightarrow x=-1\)

\(D=3x^2-7x+20=3\left(x^2-\dfrac{7}{3}x+\dfrac{49}{36}\right)+\dfrac{191}{12}=3\left(x-\dfrac{7}{6}\right)^2+\dfrac{191}{12}\ge\dfrac{191}{12}\)Vậy \(Min_D=\dfrac{191}{12}\) khi \(x-\dfrac{7}{6}=0\Rightarrow x=\dfrac{7}{6}\)

\(E=x^2-4xy+5y^2-22y+8\)

\(=\left(x^2-4xy+4y^2\right)+\left(y^2-22y+121\right)-113\)\(=\left(x-2y\right)^2+\left(y-11\right)^2-113\ge-113\)

Vậy \(Min_E=-113\) khi \(\left[{}\begin{matrix}x-2y=0\\x-11=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}11-2y=0\\x=11\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2y=11\\x=11\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{11}{2}\\x=11\end{matrix}\right.\)