\(\widehat{A}=80^o.\)Gọi O là một điểm ở trong tam giác s...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 6 2017

A B C O D

Trên nửa mặt phẳng bờ BC chứa điểm A, dựng tam giác đều BCD, nối D với A.

\(\Delta\)BCD đều \(\Rightarrow\)BC=BD=DC và ^BDC=^DBC=^DCB=600.

\(\Delta\)ABC cân tại A \(\Rightarrow\)AB=AC.  Mà ^BAC=800 \(\Rightarrow\)^ABC=^ACB=500.

Xét \(\Delta\)BAD và \(\Delta\)CAD có:

AB=AC

AD chung    \(\Rightarrow\)\(\Delta\)BAD=\(\Delta\)CAD (c.c.c)

BD=CD 

\(\Rightarrow\)^BDA=^CDA (2 góc tương ứng) \(\Rightarrow\)^BDA=^CDA=^BDC/2=600/2=300.

Mà ^CBO=300 \(\Rightarrow\)^CDA=^CBO=300. Lại có: ^ACD=^DCB-^ACB=600-500=100\(\Rightarrow\)^ACD=^OCB=100.

Xét \(\Delta\)CAD và \(\Delta\)COB có:

^CDA=^CBO

DC=BC              \(\Rightarrow\)\(\Delta\)CAD=\(\Delta\)COB (g.c.g) \(\Rightarrow CA=CO\)(2 cạnh tương ứng)

^ACD=^OCB

\(\Delta COA\)cân tại C (đpcm)

7 tháng 1 2018

B C A M O

\(\Delta ABC\)cân tại A, \(\widehat{A}=80^o\)suy ra : \(\widehat{B}=\widehat{C}=50^o\)

Vẽ tam giác BCM đều ( M và A thuộc cùng một nửa mặt phẳng bờ BC ) 

\(\widehat{MCA}=60^o-50^o=10^o\)

\(\Delta AMB=\Delta AMC\)( c.c.c )

suy ra : \(\widehat{AMB}=\widehat{AMC}=60^o:2=30^o\)

\(\Delta OBC=\Delta AMC\)( g.c.g ) suy ra CO = CA do đó \(\Delta COA\)cân

7 tháng 1 2018

Chịu tôi mới lop5 làm sao dc

21 tháng 5 2018

A B C O M

21 tháng 5 2018

vẽ tam giác đều BCM ( M và A cùng thuộc 1 nửa mặt phẳng bờ BC )

CM được tam giác COA cân tại C

\(\widehat{ACO}=45^o-15^o=30^o\)

\(\widehat{CAO}=\left(180^o-30^o\right):2=75^o\)

\(\widehat{BAO}=90^o-75^o=15^o\)\(\widehat{ABO}=45^o-30^o=15^o\)

Vậy \(\widehat{BAO}=\widehat{ABO}\)suy ra : \(\Delta AOB\)cân tại O

Ta có hình vẽ sau: 

M D B A C

Vẽ hình trước nhé, bài làm để sau cái đã~

Hình như từng làm bài này rồi

Đợi nháp lại~

Chết cha

cái hình sai rồi -.-' xin lỗi

Ko vẽ hình nữa

tự vẽ nhaT.T

15 tháng 4 2020

Câu 1:

Xét tam giác AMB và tam giác AMC ta có:

        AB = AC (tam giác ABC cân tại A)

        ABM = ACM (tam giác ABC cân tại A)

=> Tam giác AMB = tam giác AMC (ch-gn) (dpcm)

15 tháng 4 2020

Câu 2:

a) Ta có: +) AK+KB = AB => KB = AB-AK

               +) AH+HC = AC => HC = AC-AH

Mà AB=AC(tam giác ABC cân tại A) ; AK=AH (gt)

=>KB=HC

Xét tam giác BHC và tam giác CKB ta có:

          HC=KB (cmt)

          HCB=KBC (tam giác ABC cân tại A)

          BC là cạnh chung

=>tam giác BHC = tam giác CKB (c.g.c)

=>BH=CK (2 cạnh tương ứng)     (dpcm)

Xét tam giác ABH và tam giác ACK ta có:

        AB=AC (tam giác ABC cân tại A)

        BH=CK (cmt)

        AH=AK (gt)

=> tam giác ABH = tam giác ACK (c.c.c)

=> ABH = ACK (2 góc tương ứng) (dpcm)

b) Theo a) tam giác BHC= tam giác CKB

=> HBC=KCB (2 góc tương ứng) hay OBC=OCB

=> Tam giác OBC là tam giác cân tại O (dpcm)

c) Theo b tam giác OBC cân tại O => OB=OC

    Theo a góc ABH = góc ACK => KBO= HCO

Xét tam giác OKB và tam giác OHC ta có:

      KB=HC (theo a)

      KBO=HCO (cmt)

      OB=OC (cmt)

=> tam giác OKB = tam giác OHC (c.g.c)

=> OK = OH (2 cạnh tương ứng) hay tam giác OKH là tam giác cân tại O (dpcm)

d) Gọi giao điểm của AO và KH là I

Xét tam giác AKO và tam giác AHO ta có:

        AK=AH (gt)

        AO là cạnh chung

        OK=OH (theo c)

=> tam giác AKO = tam giác AHO (c.c.c)

=> KAO = HAO (2 góc tương ứng)   hay KAI=HAI

Xét tam giác KAI và tam giác HAI ta có:

          AK=AH (gt)

          KAI=HAI (cmt)

          AI là cạnh chung

=> tam giác KAI = tam giác HAI ( c.g.c)

=> KI=HI ,   mà I nằm giữa H và K

=> I là trung điểm của KH hay

AO đi qua trung điểm của KH (dpcm)

22 tháng 2 2020

Câu hỏi của Nguyễn Vũ Thu Hương - Toán lớp 7 - Học toán với OnlineMath

Em tham khảo!