Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(3x^2-7x+8=3\left(x^2-\frac{7}{3}x+\frac{8}{3}\right)\)
\(=3\left(x^2-2.\frac{7}{6}x+\frac{49}{36}+\frac{47}{36}\right)\)
\(=3\left(x-\frac{7}{6}\right)^2+\frac{47}{12}\ge\frac{47}{12}\)
Dấu = xảy ra khi \(x-\frac{7}{6}=0\Rightarrow x=\frac{7}{6}\)
Vậy Min A = \(\frac{47}{12}\) khi \(x=\frac{7}{6}\)
min a nếu x = 0
=>0 + 0 - 0 + 2038
=> A = 2038
Hội con 🐄 chúc bạn học tốt!!!
\(A=x^4+6x^2+3^2+x^2-4x+2^2+2025.\)
\(A=\left(x^2+3\right)^2+\left(x-2\right)^2+2025\)
Vì \(\hept{\begin{cases}\left(x^2+3\right)^2\ge0\forall x\\\left(x-2\right)^2\ge0\forall x\end{cases}}\Rightarrow\left(x^2+3\right)^2+\left(x-2\right)^2+2025\ge2025\forall x\)
Dấu '' = " xảy ra khi
\(\left(x^2+3\right)^2=0\) hoặc \(\left(x-2\right)^2=0\)
\(\Rightarrow x=\pm\sqrt{3}\) \(\Rightarrow x=2\)
Vậy \(Min_A=2025\Leftrightarrow x=\pm\sqrt{3};x=2\)
Study well
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
\(C=-4x^2+9x+7=-\left[\left(2x\right)^2-9x-7\right]\)
\(=-\left[\left(2x\right)^2-2.2,25x+5,0625-12,0625\right]\)
\(=-\left[\left(2x-2,25\right)^2-12,065\right]=-\left(2x-2,25\right)^2+12,0625\)
Ta có: \(\left(2x-2,25\right)^2\ge0\)\(\Leftrightarrow-\left(2x-2,25\right)^2\le0\)\(\Leftrightarrow-\left(2x-2,25\right)^2+12,0625\le12,0625\)
Vậy \(C_{max}=12,0625\)(Dấu "="\(\Leftrightarrow x=1,125\))
C= -4x2 +9x+7
Giải phương trình trên máy tính rồi ấn 3 lần dấu ' = ' để tìm GTLN
KQ : Max C = \(\frac{9}{8}\)
D=-3x2-7x+12
Giải phương trình trên máy tính rồi ấn 3 lần dấu ' = ' để tìm GTLN
Max D = \(-\frac{7}{6}\)
Không có Min đâu nhé bạn
Ta có 3x2+y2+2xy+4=7x+3y
<=> (x2 + 2xy + y2 ) - 3(x + y) + 2(x2 - 2x +1) + 2 = 0
<=> P2 - 3P + 9/4 + 2(x - 1)2 - 1/4 = 0
<=> (P - 3/2)2 = 1/4 - 2(x - 1)2
<=> P - 3/2 = 1/4 - 2(x - 1)2 hoặc P - 3/2 = 2(x - 1)2 - 1/4
Tương ứng với mỗi cái ta sẽ có GTLN, GTNN phần còn lại bạn giải nha
Ta có 3x
2+y
2+2xy+4=7x+3y
<=> (x
2 + 2xy + y
2
) - 3(x + y) + 2(x
2
- 2x +1) + 2 = 0
<=> P
2
- 3P + 9/4 + 2(x - 1)2
- 1/4 = 0
<=> (P - 3/2)2 = 1/4 - 2(x - 1)2
<=> P - 3/2 = 1/4 - 2(x - 1)2 hoặc P - 3/2 = 2(x - 1)2
- 1/4
Tương ứng với mỗi cái ta sẽ có GTLN, GTNN phần còn lại bạn giải nha
chúc cậu hok tốt @_@
a)2x(x-5)-2x2 = 20
\(VT=-10x\)
\(\Leftrightarrow-10x=20\)
\(\Leftrightarrow x=-2\)
b)5x(2x-7)+2x(8-5x)=5
\(VT=-19x\)
\(\Leftrightarrow-19x=5\)
\(\Leftrightarrow x=-\frac{5}{19}\)
c)4x(7x-5)-7x(4x-2)= -12
\(VT=-6x\)
\(\Leftrightarrow-6x=-12\)
\(\Leftrightarrow x=2\)