![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
(x-1)(2x^2-8)=0
\(\Leftrightarrow\left(x-1\right)\left(2x^2-8\right)=0\\ \left(2x^3-8x-2x^2+8\right)=0\)
\(\Leftrightarrow2x\left(x-1\right)-8\left(x-1\right)=0\)
\(\Leftrightarrow x=1;x=\dfrac{8}{2}\)
3x^2-8x+5=0
áp dụng công thức bậc 2 ta có:
\(x=\dfrac{-\left(-8\right)\pm\sqrt{\left(-8\right)^2-4.3.5}}{2.3}\)
\(\Rightarrow x=\dfrac{5}{3};x=1\)
(7x-1).2x-7x+1=0
\(\Leftrightarrow\left(7x-1\right)\left(2x-1\right)=0\)
\(\Leftrightarrow x=\dfrac{1}{7};x=\dfrac{1}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a,2\left(x-5\right)=2\left(2x-3\right)\)
\(\Leftrightarrow2x-10-4x+6=0\)
\(\Leftrightarrow-2x=4\)
\(\Leftrightarrow x=-2\)
\(-3x^2-7=0\Leftrightarrow x^2=-\dfrac{7}{3}\Leftrightarrow\) pt vô nghiệm
Vậy 2 pt ko tương đương
\(b,\dfrac{2x-3}{5}-\dfrac{7x-2}{4}=3\)
\(\Leftrightarrow4\left(2x-3\right)-5\left(7x-2\right)-3.20=0\)
\(\Leftrightarrow8x-12-35x+10-60=0\)
\(\Leftrightarrow-27x=62\)
\(\Leftrightarrow x=-\dfrac{62}{27}\)
\(x^2-4x-4=0\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x=2\)
Vậy 2 pt ko tương đương
![](https://rs.olm.vn/images/avt/0.png?1311)
Giải:
Ta có phép chia: \(\left(-2x^3+7x^2-8x+3\right):\left(3-2x\right)\)
\(\Leftrightarrow\left(-2x^3+7x^2-8x+3\right):\left(-2x+3\right)\)
-2x + 7x - 8x + 3 -2x + 3 3 2 x 2 -2x + 3x - 2 4x - 8x + 3 2 - 2x 4x - 6x 2 - -2x + 3 + 1 -2x + 3 0 -
\(\Rightarrow\left(-2x+3\right).\left(x^2-2x+1\right)=-2x^3+7x^2-8x+3\)
Hay \(\left(3-2x\right).\left(x^2-2x+1\right)=-2x^3+7x^2-8x+3\)
Vậy \(\left(3-2x\right).\left(x^2-2x+1\right)=-2x^3+7x^2-8x+3\).
Chúc bạn học tốt!
![](https://rs.olm.vn/images/avt/0.png?1311)
\(2x^3+7x^2+7x+2=0\)
\(\Leftrightarrow\left(2x^3+4x^2\right)+\left(3x^2+6x\right)+\left(x+2\right)=0\)
\(\Leftrightarrow2x^2\left(x+2\right)+3x\left(x+2\right)+\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(2x^2+3x+1\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left[2x\left(x+1\right)+\left(x+1\right)\right]=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+1\right)\left(2x+1\right)=0\)
.......................................................................................
\(x^3-8x^2-8x+1=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)-8x\left(x+1\right)=0\)
......................................................................................
![](https://rs.olm.vn/images/avt/0.png?1311)
b) đặt x^2+2x+2=t => t>0
\(\frac{t-1}{t}+\frac{t}{t+1}=\frac{7}{6}\Leftrightarrow\frac{2t^2-1}{t^2+t}=\frac{7}{6}\Leftrightarrow12t^2-6=7t^2+7t\)
\(\Leftrightarrow5t^2-7t-6=0\Leftrightarrow5t\left(t-2\right)+3t-6=\left(t-2\right)\left(5t+3\right)\Rightarrow\left[\begin{matrix}t=2\\t=\frac{-3}{5}\left(loai\right)\end{matrix}\right.\)
với t=2
\(x^2+2x+2=2\Rightarrow x^2+2x=0\Rightarrow\left[\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
\(\frac{7x}{\left(2x+3\right).\left(2x-3\right)}:\frac{5}{8x-4}\)
\(=\frac{7x}{4x^2-9}\cdot\frac{8x-4}{5}=\frac{56x^2-28}{20x^2-45}\)
p/s: lần sau bn vt rõ hộ tớ cái đề....dùng công thức í
M= x+2 phần x2-2x + x-4 phần 2x-4
a) tìm ĐKXĐ
b) Rút gọn