Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
7 giờ 12 phut=........giờ
Trả lời:
7 giờ 12 phut=.....7,2...giờ
chúc bạn học tốt
a. ở vn là (UTC +7), Nhật là (UTC+9) vậy nhật nhanh hơn vn 2h do đó tại nhật sẽ là 1h30 ngày 3/3/2020
b. minh tại vn (UTC+7)=17H20P ⇒ UTC= 10h20p
vậy 2h20p ở los chậm hơn UTC 8h nên múi giờ là (UTC-8)
Gọi x là năng suất mà tổ (I) làm trong 1h(x>0) (công việc/h)
y là năng suất mà tổ (II) làm trong 1h (y>0) (công việc/h)
Mà tổ (I)và (II) cùng làm với nhau trong 12h thì xong 1 công việc nên ta có phương trình:
12x+12y=1 (1)
nếu 2 tổ làm trong 3h sau đó tổ II đi làm việc khác và tổ I làm thêm 7h thì được 7/12 công việc nên
10x+3y=7/12 (2)
(1),(2) ta có hệ phương trình:
12x+12y=1
10x+3y=7/12
⇒x=1/21(TM); y=1/28(TM)
Vậy Tổ (I)làm một mình trong 21h thì xong công việc.
Tổ (II) làm một mình trong 28h thì xong công việc.
Tham khảo:
Gọi x là năng suất mà tổ (I) làm trong 1h(x>0) (công việc/h)
y là năng suất mà tổ (II) làm trong 1h (y>0) (công việc/h)
Mà tổ (I)và (II) cùng làm với nhau trong 12h thì xong 1 công việc nên ta có phương trình:
12x+12y=1 (1)
nếu 2 tổ làm trong 3h sau đó tổ II đi làm việc khác và tổ I làm thêm 7h thì được 7/12 công việc nên
10x+3y=7/12 (2)
(1),(2) ta có hệ phương trình:
12x+12y=1
10x+3y=7/12
⇒x=1/21(TM); y=1/28(TM)
Vậy Tổ (I)làm một mình trong 21h thì xong công việc.
Tổ (II) làm một mình trong 28h thì xong công việc.
Lời giải:
Giả sử tổ 1 và tổ 2 làm 1 mình thì lần lượt trong $a$ và $b$ sẽ xong công việc. ĐK: $a,b>0$.
Trong 1 giờ thì:
Tổ 1 làm được $\frac{1}{a}$ công việc
Tổ 2 làm được $\frac{1}{b}$ công việc
Ta có:
\(\left\{\begin{matrix} 12(\frac{1}{a}+\frac{1}{b})=1\\ \frac{3+7}{a}+\frac{3}{b}=\frac{7}{12}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} \frac{12}{a}+\frac{12}{b}=1\\ \frac{10}{a}+\frac{3}{b}=\frac{7}{12}\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} \frac{1}{a}=\frac{1}{21}\\ \frac{1}{b}=\frac{1}{28}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a=21\\ b=28\end{matrix}\right.\) (thỏa mãn)
Vậy....
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{5}{36}\\\dfrac{4}{x}+\dfrac{3}{y}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{y}=\dfrac{1}{18}\\\dfrac{1}{x}=\dfrac{5}{36}-\dfrac{1}{18}=\dfrac{1}{12}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=12\\y=18\end{matrix}\right.\)
Gọi thời gian làm riêng hoàn thành công việc của lớp 9A là x(giờ)
(Điều kiện: x>0)
Thời gian làm riêng hoàn thành công việc của lớp 9B là x+1(giờ)
Trong 1 giờ, lớp 9A làm được \(\dfrac{1}{x}\)(công việc)
Trong 1 giờ, lớp 9B làm được \(\dfrac{1}{x+1}\)(công việc)
Trong 1 giờ, hai lớp làm được \(1:\dfrac{12}{7}=\dfrac{7}{12}\)(công việc)
Do đó, ta có phương trình: \(\dfrac{1}{x}+\dfrac{1}{x+1}=\dfrac{7}{12}\)
=>\(\dfrac{x+1+x}{x\left(x+1\right)}=\dfrac{7}{12}\)
=>7x(x+1)=12(2x+1)
=>\(7x^2+7x-24x-12=0\)
=>\(7x^2-17x-12=0\)
=>\(7x^2-21x+4x-12=0\)
=>(x-3)(7x+4)=0
=>\(\left[{}\begin{matrix}x-3=0\\7x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\left(nhận\right)\\x=-\dfrac{4}{7}\left(nhận\right)\end{matrix}\right.\)
Vậy: Thời gian làm riêng hoàn thành công việc của lớp 9A là 3 giờ
Thời gian làm riêng hoàn thành công việc của lớp 9B là 3+1=4 giờ
7 giờ 12 phút =\(\frac{36}{5}\)giờ