Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2:
a: 5/x-y/3=1/6
=>\(\dfrac{15-xy}{3x}=\dfrac{1}{6}\)
=>\(\dfrac{30-2xy}{6x}=\dfrac{x}{6x}\)
=>30-2xy=x
=>x(2y+1)=30
=>(x;2y+1) thuộc {(30;1); (-30;-1); (10;3); (-10;-3); (6;5); (-6;-5)}
=>(x,y) thuộc {(30;0); (-30;-1); (10;1); (-10;-2); (6;2); (-6;-3)}
b: x/6-2/y=1/30
=>\(\dfrac{xy-12}{6y}=\dfrac{1}{30}\)
=>\(\dfrac{5xy-60}{30y}=\dfrac{y}{30y}\)
=>5xy-60=y
=>y(5x-1)=60
=>(5x-1;y) thuộc {(-1;-60); (4;15); (-6;-10)}(Vì x,y là số nguyên)
=>(x,y) thuộc {(0;-60); (1;15); (-1;-10)}
bài 1 : a,ta có 3/x-1 =4/y-2=5/z-3 => x-1/3=y-2/4=z-3/5
áp dụng .... => x-1+y-2+z-3 / 3+4+5 = x+y+z-1-2-3/3+4+5 = 12/12=1
do x-1/3 = 1 => x-1 = 3 => x= 4 ( tìm y,z tương tự
Bài 1:
a) Ta có: 3/x - 1 = 4/y - 2 = 5/z - 3 => x - 1/3 = y - 2/4 = z - 3/5 áp dụng ... =>x - 1 + y - 2 + z - 3/3 + 4 + 5 = x + y + z - 1 - 2 - 3/3 + 4 + 5 = 12/12 = 1 do x - 1/3 = 1 => x - 1 = 3 => x = 4 ( tìm y, z tương tự )
Bài 3 :
\(\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+...+\dfrac{1}{2023!}\)
\(\dfrac{1}{2!}=\dfrac{1}{2.1}=1-\dfrac{1}{2}< 1\)
\(\dfrac{1}{3!}=\dfrac{1}{3.2.1}=1-\dfrac{1}{2}-\dfrac{1}{3}< 1\)
\(\dfrac{1}{4!}=\dfrac{1}{4.3.2.1}< \dfrac{1}{3!}< \dfrac{1}{2!}< 1\)
.....
\(\)\(\dfrac{1}{2023!}=\dfrac{1}{2023.2022....2.1}< \dfrac{1}{2022!}< ...< \dfrac{1}{2!}< 1\)
\(\Rightarrow\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+...+\dfrac{1}{2023!}< 1\)
b:
ĐKXĐ: x<>0
\(\dfrac{2}{x}+\dfrac{y}{3}=\dfrac{1}{6}\)
=>\(\dfrac{6+xy}{3x}=\dfrac{1}{6}\)
=>\(6\left(6+xy\right)=3x\)
=>\(x=2\left(6+xy\right)=12+2xy\)
=>\(x\left(1-2y\right)=12\)
mà x,y là các số nguyên
nên \(\left(x;1-2y\right)\in\left\{\left(12;1\right);\left(-12;-1\right);\left(4;3\right);\left(-4;-3\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(12;0\right);\left(-12;1\right);\left(4;-1\right);\left(-4;2\right)\right\}\)
c: ĐKXĐ: y<>-1
\(\dfrac{x}{3}+\dfrac{1}{y+1}=\dfrac{1}{6}\)
=>\(\dfrac{xy+x+3}{3\left(y+1\right)}=\dfrac{1}{6}\)
=>\(\dfrac{2\left(xy+x+3\right)}{6\left(y+1\right)}=\dfrac{y+1}{6\left(y+1\right)}\)
=>\(2xy+2x+6=y+1\)
=>\(2x\left(y+1\right)-\left(y+1\right)=-6\)
=>\(\left(2x-1\right)\left(y+1\right)=-6\)
mà x,y là các số nguyên
nên \(\left(2x-1;y+1\right)\in\left\{\left(1;-6\right);\left(-1;6\right);\left(3;-2\right);\left(-3;2\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(1;-7\right);\left(0;5\right);\left(2;-3\right);\left(-1;1\right)\right\}\)
4/ Chọn câu sai : Các số nguyên x, y mà là :
A. x = 1, y = 6 B. x=2, y = -3 C. x = - 6, y = - 1 D. x = 2, y = 3
1: k=xy=-6x3=-18
=>x=-18/y
2: Khi x=-1 thì \(y=\dfrac{-18}{x}=18\)
Khi x=2 thì \(y=-\dfrac{18}{x}=-9\)
Khi x=6 thì \(y=-\dfrac{18}{x}=-3\)
Khi x=-3/4 thì \(y=-18:\dfrac{3}{4}=-18\cdot\dfrac{4}{3}=-24\)
3: Khi y=1 thì \(x=\dfrac{-18}{y}=-18\)
Khi y=-2 thì \(x=\dfrac{-18}{-2}=9\)
Khi y=2/3 thì \(x=-\dfrac{18}{y}=-18\cdot\dfrac{3}{2}=-27\)
\(\frac{x+y+1}{x}=6\)
\(x+y+1=6x\)
\(y+6.\frac{1}{6}=5x\)
\(6x+7y+6z=5x\)
\(x+7y+6z=0\Rightarrow\frac{1}{6}+6y+5z=0\Rightarrow6y+5z=-\frac{1}{6}\)
\(\frac{x+z+2}{y}=6\Leftrightarrow13x+13z+6y=0\Leftrightarrow7x+7z=-1\Leftrightarrow x+z=-\frac{1}{7}\)
\(x+y+z-x-z=y=\frac{1}{6}-\left(-\frac{1}{7}\right)=\frac{13}{42}\)
\(6y+5z=-\frac{1}{6}\Leftrightarrow\frac{13}{7}+5z=-\frac{1}{6}\Leftrightarrow5z=-\frac{85}{42}\Leftrightarrow z=-\frac{17}{42}\)
\(x+y+z=\frac{1}{6}\Leftrightarrow x+\frac{13}{42}-\frac{17}{42}=\frac{1}{6}\Leftrightarrow x=\frac{1}{6}-\frac{13}{42}+\frac{17}{42}=\frac{11}{42}\)
Bài 7.1 Hai thửa ruộng trồng lúa lần lượt thu hoạch được 11,6 tấn thóc và 17,4 tấn thóc. Năng suất ở hai thửa ruộng là như nhau. Hỏi mỗi thửa ruộng rộng bao nhiêu héc-ta? Biết rằng thửa ruộng thứ hai rộng hơn thửa ruộng thửa ruộng thứ nhất là 0,5 ha.