\(6x^2-41x+48=0\)
Này r lm sao mn giúp mình vs ạ:3

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 5 2022

\(\Leftrightarrow6x^2-9x-32x+48=0\)

\(\Leftrightarrow3x\left(2x-3\right)-16\left(2x-3\right)=0\)

\(\Leftrightarrow\left(2x-3\right)\left(3x-16\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{16}{3}\end{matrix}\right.\)

16 tháng 5 2022

\(x\) = 1,5; \(x\) = \(\dfrac{16}{3}\)

AH
Akai Haruma
Giáo viên
23 tháng 8 2020

Vy Lê: bạn ơi hướng làm của bài là khai triển biểu thức đơn giản và phát hiện 1 số biểu thức có liên quan đến hằng đẳng thức thôi nên mình nghĩ mình làm như vậy cũng có ngắn lắm đâu nhỉ? Ví dụ như câu c chả hạn. $(2x+3)(4x^2-6x+9)=(2x)^3+3^3$ là hằng đẳng thức đáng nhớ rồi nên mình áp dụng luôn. $2(4x^3-3)=8x^3-6$ theo khai triển thông thường.

AH
Akai Haruma
Giáo viên
23 tháng 8 2020

Lời giải:
a)

$(-x-3)^3+(x+9)(x^2+27)$

$=(x+9)(x^2+27)-(x+3)^3$

$=x^3+27x+9x^2+243-(x^3+9x^2+27x+27)$

$=216$

b)

$(x+2)^3-x(x^2+6x-5)-8$

$=x^3+6x^2+12x+8-x^3-6x^2+5x-8$

$=17x$

c)

$(2x+3)(4x^2-6x+9)-2(4x^3-3)$

$=(2x)^3+3^3-2(4x^3-3)=8x^3+27-8x^3+6=33$

13 tháng 7 2016

a) 6x^2-11x+3                              b)2x^2+3x-27                      c)3x^2-8x+4

= 6x^2-2x-9x+3                            =2x^2-6x+9x-27                    =3x^2-6x-2x+4

=2x(3x-1)-3(3x-1)                         =2x(x-3)+9(x-3)                      =3x(x-2)-2(x-2)

=(2x-3)(3x-1)                               =(2x+9)(x-3)                           =(3x-2)(x-2)      

28 tháng 7 2019

\(A=3\left(x-3\right)\left(x+7\right)+\left(x+4\right)^2+48\)

\(A=3\left(x^2-4x-21\right)+\left(x^2+8x+16\right)+48\)

\(A=\left(3x^2+x^2\right)-\left(12x-8x\right)-\left(21-16-48\right)\)

\(A=4x^2-4x+43\)

\(A=\left(4x^2-4x+1\right)+42\)

\(A=\left(2x+1\right)^2+42\)

Thay \(x=\frac{1}{2}\) vao A ta duoc:

\(A=\left(2\cdot\frac{1}{2}+1\right)^2+42=46\)

\(A=3\left(x-3\right)\left(x-7\right)+\left(x+4\right)^2+48\)

\(=3x^2-13x+63+x^2+8x+16+48\)

\(=4x^2-5x+127\)

\(4\cdot0,25-5\cdot0,5+127=1-1+127=127\)

8 tháng 8 2019

1) \(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)\(\Leftrightarrow\)\(2x^2+2y^2\ge x^2+2xy+y^2\)\(\Leftrightarrow\)\(\left(x-y\right)^2\ge0\) ( luôn đúng ) 

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y\)

2) \(\frac{1}{xy}=\frac{1}{\left(\sqrt{xy}\right)^2}\ge\frac{1}{\left(\frac{x+y}{2}\right)^2}=4\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=\frac{1}{2}\)

9 tháng 8 2019

bạn Diệu Linh ơi, bài này bảo chứng minh điều đó là đúng chứ không bảo điều đó là giả thiết nhé bạn, nhưng cũng cảm ơn bạn vì đã giúp mình =))

18 tháng 8 2021

1) <=> x2 - 4x - x2 + 8 = 0 <=> x2 - 4x + 8 =  0 

Dễ thấy phương trình vô nghiệm vì x2 - 4x + 8 = ( x - 2 )2 + 4 > 0

2) <=> ( x - 1 )3 = 0 <=> x = 1

3) <=> ( x - 2 )3 = 0 <=> x = 2

4) <=> ( 2x - 1 )3 = 0 <=> x = 1/2

5 tháng 2 2017

Bài 1:

a)Từ \(a^3+b^3+c^3=3abc\Rightarrow a^3+b^3+c^3-3abc=0\)

\(\Rightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)

\(\Rightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)

\(\Rightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\)

\(\Rightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\)

\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

\(\Rightarrow\left[\begin{matrix}a+b+c=0\\a^2+b^2+c^2-ab-bc-ac=0\end{matrix}\right.\) (Điều phải chứng minh)

b)Ngược lại ta cũng có : nếu \(a+b+c=0\) thì \(a^3+b^3+c^3=3abc\)

5 tháng 2 2017

Bài 2:

a)\(\frac{3m^2+7m+1}{m-3}=\frac{3m\left(m-3\right)+16m+1}{m-3}=\frac{3m\left(m-3\right)}{m-3}+\frac{16m+1}{m-3}=3m+\frac{16m+1}{m-3}\in Z\)

Suy ra \(16m+1⋮m-3\)

\(\frac{16m+1}{m-3}=\frac{16\left(m-3\right)+49}{m-3}=\frac{16\left(m-3\right)}{m-3}+\frac{49}{m-3}=16+\frac{49}{m-3}\in Z\)

Suy ra 49 chia hết m-3....

b)tương tự

27 tháng 6 2017

a) ... \(\Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(x+2\right)=0\Leftrightarrow\hept{\begin{cases}x=1\\x=2\\x=-2\end{cases}}\)Vậy.....

b) ... \(\Leftrightarrow x^3\left(x-2\right)+10x\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3+10x\right)=0\)

\(\Leftrightarrow x\left(x-2\right)\left(x^2+10\right)=0\Leftrightarrow\hept{\begin{cases}x=0\\x=2\\x^2=-10\Rightarrow x\in\theta\end{cases}}\)(\(\theta\)là rỗng) Vậy.........

c) ... \(\Leftrightarrow2x-3=x+5\Leftrightarrow x=8\)Vậy.......

d) ... \(\Leftrightarrow x\left(x^2-16\right)=0\Leftrightarrow x\left(x-4\right)\left(x+4\right)=0\Leftrightarrow\hept{\begin{cases}x=0\\x=4\\x=-4\end{cases}}\)Vậy......

9 tháng 7 2016

chữ bị lỗi .... ~0~

9 tháng 7 2016

1/

a/  \(x^2+y^2=x^2+y^2+2xy-2xy\)\(=\left(x+y\right)^2-2xy\)

thay vào: \(\left(x+y\right)^2-2xy=a^2-2b\)

b/ \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=\left(x+y\right)\left(x^2+y^2+2xy-xy-2xy\right)\)\(=\left(x+y\right)\left[\left(x+y\right)^2-3xy\right]\)

thay vào:  \(=\left(x+y\right)\left[\left(x+y\right)^2-3xy\right]=a\left(a^2-3b\right)\)

c/ \(x^4+y^4=\left(x^2+y^2\right)^2-2x^2y^2=\left[\left(x+y\right)^2-2xy\right]^2-2x^2y^2\)

thay vào: \(\left[\left(x+y\right)^2-2xy\right]^2-2x^2y^2=\left(a^2-2b\right)^2-2b^2\)

22 tháng 6 2017

Mai cho bn đấy tui dg định off =))

a)\(11x+11y-x^2-xy\)

\(=\left(11x+11y\right)-\left(x^2+xy\right)\)

\(=11\left(x+y\right)-x\left(x+y\right)\)

\(=\left(11-x\right)\left(x+y\right)\)

b)\(x^2-xy-8x+8y\)

\(=\left(x^2-xy\right)-\left(8x-8y\right)\)

\(=x\left(x-y\right)-8\left(x-y\right)\)

\(=\left(x-8\right)\left(x-y\right)\)

c)\(x^2-6x-y^2+9\)

\(=\left(x^2-6x+9\right)-y^2\)

\(=\left(x-3\right)^2-y^2=\left(x-3+y\right)\left(x-3-y\right)\)

d)\(x^2+2xy+y^2-xz-yz\)

\(=\left(x^2+2xy+y^2\right)-\left(xz+yz\right)\)

\(=\left(x+y\right)^2-z\left(x+y\right)\)

\(=\left(x+y\right)\left(x+y-z\right)\)

22 tháng 6 2017

a) \(11x+11y-x^2-xy\)

\(=11\left(x+y\right)-x\left(x+y\right)\)

\(=\left(x+y\right)\left(11-x\right)\)

b) \(x^2-xy-8x+8y\)

\(=x\left(x-y\right)-8\left(x-y\right)\)

\(=\left(x-y\right)\left(x-8\right)\)

c) \(x^2-6x-y^2+9\)

\(=\left(x^2-6x+9\right)-y^2\)

\(=\left(x-3\right)^2-y^2\)

\(=\left(x-3-y\right)\left(x-3+y\right)\)

d) \(x^2+2xy+y^2-xz-yz\)

\(=\left(x+y\right)^2-z\left(x+y\right)\)

\(=\left(x+y\right)\left(x+y-z\right)\)