Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
e: \(x^2+6x+9-y^2\)
\(=\left(x+3\right)^2-y^2\)
\(=\left(x+3-y\right)\left(x+3+y\right)\)
f: \(x^2-2x+7x-14\)
\(=x\left(x-2\right)+7\left(x-2\right)\)
=(x-2)(x+7)
h: \(5x^2-10xy+5y^2-20\)
\(=5\left(x^2-2xy+y^2-4\right)\)
\(=5\left(x-y-2\right)\left(x-y+2\right)\)
a: \(3x^4-6x^3+2x^2=x^2\left(3x^2-6x+2\right)\)
b: \(x^3y+12x^2y+36xy=xy\left(x^2+12x+36\right)=xy\left(x+6\right)^2\)
c: \(x^3y-9xy^3=xy\left(x^2-9y^2\right)=xy\left(x-3y\right)\left(x+3y\right)\)
d: \(x^2y^2-2xy^2+y^2=y^2\left(x-1\right)^2\)
a: Sửa đề: \(2A+\left(2x^2+y^2\right)=6x^2+5y^2-2x^2y^2\)
=>\(2A=6x^2+5y^2-2x^2y^2-2x^2-y^2\)
=>\(2A=4x^2+4y^2-2x^2y^2\)
=>\(A=2x^2+2y^2-x^2y^2\)
b: \(2A-\left(xy+3x^2-2y^2\right)=x^2-8y+xy\)
=>\(2A=x^2-8y+xy+xy+3x^2-2y^2\)
=>\(2A=4x^2+2xy-8y-2y^2\)
=>\(A=2x^2+xy-4y-y^2\)
c: Sửa đề: \(A+\left(3x^2y-2xy^2\right)=2x^2y+4xy^3\)
=>\(A=2x^2y+4xy^3-3x^2y+2xy^2\)
=>\(A=-x^2y+4xy^3+2xy^2\)
\(a,15x^3y^2-9x^3y^3+6x^3y^3\\ b,12x^3+6x^2y-2x-6x^2y-3xy^2-y\\ =12x^3-2x-3xy^2-y\\ c,4x^2y^3-1\)
a) \(\left(\dfrac{3}{5}a^6x^3+\dfrac{3}{7}a^3x^4-\dfrac{9}{10}ax^5\right):\dfrac{3}{5}ax^3\)
\(=\dfrac{\dfrac{3}{5}a^6x^3+\dfrac{3}{7}a^3x^4-\dfrac{9}{10}ax^5}{\dfrac{3}{5}ax^3}\)
\(=\dfrac{\dfrac{3}{5}ax^3\left(a^5+\dfrac{5}{7}a^2x-\dfrac{3}{2}x^2\right)}{\dfrac{3}{5}ax^3}\)
\(=a^5+\dfrac{5}{7}a^2x-\dfrac{3}{2}x^2\)
b) \(\left(9x^2y^3-15x^4y^4\right):3x^2y-\left(2-3x^2y\right)\cdot y^2\)
\(=\dfrac{3x^2y\left(3y^2-5x^2y^3\right)}{3x^2y}-2y^2+3x^2y^3\)
\(=3y^2-5x^2y^3-2y^2+3x^2y^3\)
\(=y^2-2x^2y^3\)
c) \(\left(6x^2-xy\right):x+\left(2x^3y+3xy^2\right):xy-\left(2x-1\right)x\)
\(=\dfrac{6x^2-xy}{x}+\dfrac{2x^3y+3xy^2}{xy}-x\left(2x-1\right)\)
\(=\dfrac{x\left(6x-y\right)}{x}+\dfrac{xy\left(2x^2+3y\right)}{xy}-2x^2+x\)
\(=6x-y+2x^2+3y-2x^2+x\)
\(=7x+2y\)
d) \(\left(x^2-xy\right):x+\left(6x^2y^5-9x^3y^4+15x^4y^2\right):\dfrac{3}{2}x^2y^3\)
\(=\dfrac{x^2-xy}{x}+\dfrac{6x^2y^5-9x^3y^4+15x^4y^2}{\dfrac{3}{2}x^2y^3}\)
\(=\dfrac{x\left(x-y\right)}{x}+\dfrac{\dfrac{3}{2}x^2y^2\left(4y^3-6xy^2+10x^2\right)}{\dfrac{3}{2}x^2y^3}\)
\(=x-y+\dfrac{4y^3-6xy^2+10x^2}{y}\)
\(A=x^2\left(x+y\right)+y^2\left(x+y\right)+2xy\left(x+y\right)\\ A=\left(x+y\right)\left(x^2+2xy+y^2\right)=\left(x+y\right)\left(x+y\right)^2\\ A=\left(x+y\right)^3\)
=15x3y2−9x3y3+6x3y3 bài này mình mới học thôi nha
tick nha
Bài 2:
a: \(x^2+5x-6=\left(x+6\right)\left(x-1\right)\)
b: \(5x^2+5xy-x-y\)
\(=5x\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(5x-1\right)\)
c:\(-6x^2+7x-2\)
\(=-6x^2+3x+4x-2\)
\(=-3x\left(2x-1\right)+2\left(2x-1\right)\)
\(=\left(2x-1\right)\left(-3x+2\right)\)
1.
a) \(=x^2\left(x^2+2x+1\right)=x^2\left(x+1\right)^2\)
b) \(=\left(x+y\right)^3-\left(x+y\right)=\left(x+y\right)\left[\left(x+y\right)^2-1\right]\)
\(=\left(x+y\right)\left(x+y-1\right)\left(x+y+1\right)\)
c) \(=5\left[\left(x^2-2xy+y^2\right)-4z^2\right]=5\left[\left(x-y\right)^2-4z^2\right]\)
\(=5\left(x-y-2z\right)\left(x-y+2z\right)\)
2.
a) \(=x\left(x+2\right)+3\left(x+2\right)=\left(x+2\right)\left(x+3\right)\)
b) \(=5x\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(5x-1\right)\)
c) \(=-\left[3x\left(2x-1\right)-2\left(2x-1\right)\right]=-\left(2x-1\right)\left(3x-2\right)\)
3.
b) \(=2x\left(x-1\right)+5\left(x-1\right)=\left(x-1\right)\left(2x+5\right)\)
c) \(=-\left[5x\left(x-3\right)-1\left(x-3\right)\right]=-\left(x-3\right)\left(5x-1\right)\)
4.
a) \(\Rightarrow\left(x-1\right)\left(5x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{5}\end{matrix}\right.\)
b) \(\Rightarrow2\left(x+5\right)-x\left(x+5\right)=0\)
\(\Rightarrow\left(x+5\right)\left(2-x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)
\(A=x^2+y^2-2xy^2-\left(6x^2-3xy^2\right)\)
\(A=-5x^2+y^2+xy^2\)
6\(x^2\) - 3\(xy^2\) + A = \(x^2\) + y2 - 2\(xy^2\)
A = \(x^2\) + y2 - 2\(xy^2\) - 6\(x^2\) + 3\(xy^2\)
A = -(6\(x^2\) - \(x^2\))+ y2 + (3\(xy^2\) - 2\(xy^2\))
A = - 5\(x^2\) + y2 + \(xy^2\)
A = - 5\(x^2\) + y2 - \(xy^2\)