K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12

6\(x\) - 18 > 4\(x\) - 6

6\(x\) - 4\(x\) > - 6 + 18

   2\(x\) > 12

    \(x>12:2\)

    \(x\) > 6

Vậy \(x\) > 6 

b: Ta có: \(\sqrt{x^2-6x+9}-\dfrac{\sqrt{6}+\sqrt{3}}{\sqrt{2}+1}=0\)

\(\Leftrightarrow x^2-6x+9=3\)

\(\Leftrightarrow x^2-6x+6=0\)

\(\text{Δ}=\left(-6\right)^2-4\cdot1\cdot6=36-24=12\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{6-2\sqrt{3}}{2}=3-\sqrt{3}\\x_2=3+\sqrt{3}\end{matrix}\right.\)

15 tháng 8 2016

1/ (x-63)(x+10)(4x-188x-2520)

15 tháng 8 2016

2/ 9(x-1)(2x-1)(64x2 + 208x+32)/8

17 tháng 10 2021

Ghi đề rõ ra b nhé

ĐKXĐ: (-6x+7)/(x^2+4x+6)>=0

=>-6x+7>=0

=>x<=7/6

17 tháng 1 2020

\(4x+6=x-1\\ \Leftrightarrow4x-x=-1-6\\ \Leftrightarrow3x=-7\\ \Leftrightarrow x=-\frac{7}{3}\)

17 tháng 1 2020

4x+6=x-1

<=> 4x-x=-1-6

<=>3x=-7

<=>x=-7/3

19 tháng 6 2019

Đặt \(\sqrt{5x^2+6x+5}=a,4x=b\left(a\ge0\right)\)

Khi đó Pt

<=> \(a\left(a^2+1\right)=b\left(b^2+1\right)\)

<=>\(\left(a-b\right)\left(a^2+ab+b^2+1\right)=0\)

MÀ \(a^2+ab+b^2+1>0\)

=> \(a=b\)

=> \(\sqrt{5x^2+6x+5}=4x\)

=> \(\hept{\begin{cases}x\ge0\\11x^2-6x-5=0\end{cases}}\)

=>\(x=1\)

Vậy x=1

11 tháng 2 2018

a) đặt \(\sqrt{x+6}=a\ge0\)

          \(\sqrt{x-2}=b\ge0\)

Ta có: \(\hept{\begin{cases}\left(a-b\right)\left(1+ab\right)=8\\a^2-b^2=8\end{cases}}\)

\(\Rightarrow\left(a-b\right)\left(1+ab\right)=\left(a-b\right)\left(a+b\right)\)

\(\Leftrightarrow\left(a-b\right)\left(ab-a-b+1\right)=0\)

\(\Leftrightarrow\left(a-b\right)\left(a-1\right)\left(b-1\right)=0\)

Đến đây tự làm nhé

11 tháng 2 2018

Đề Câu a = mấy vậy?