Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Ta có: \(\sqrt{x^2-6x+9}-\dfrac{\sqrt{6}+\sqrt{3}}{\sqrt{2}+1}=0\)
\(\Leftrightarrow x^2-6x+9=3\)
\(\Leftrightarrow x^2-6x+6=0\)
\(\text{Δ}=\left(-6\right)^2-4\cdot1\cdot6=36-24=12\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{6-2\sqrt{3}}{2}=3-\sqrt{3}\\x_2=3+\sqrt{3}\end{matrix}\right.\)
\(4x+6=x-1\\ \Leftrightarrow4x-x=-1-6\\ \Leftrightarrow3x=-7\\ \Leftrightarrow x=-\frac{7}{3}\)
Đặt \(\sqrt{5x^2+6x+5}=a,4x=b\left(a\ge0\right)\)
Khi đó Pt
<=> \(a\left(a^2+1\right)=b\left(b^2+1\right)\)
<=>\(\left(a-b\right)\left(a^2+ab+b^2+1\right)=0\)
MÀ \(a^2+ab+b^2+1>0\)
=> \(a=b\)
=> \(\sqrt{5x^2+6x+5}=4x\)
=> \(\hept{\begin{cases}x\ge0\\11x^2-6x-5=0\end{cases}}\)
=>\(x=1\)
Vậy x=1
a) đặt \(\sqrt{x+6}=a\ge0\)
\(\sqrt{x-2}=b\ge0\)
Ta có: \(\hept{\begin{cases}\left(a-b\right)\left(1+ab\right)=8\\a^2-b^2=8\end{cases}}\)
\(\Rightarrow\left(a-b\right)\left(1+ab\right)=\left(a-b\right)\left(a+b\right)\)
\(\Leftrightarrow\left(a-b\right)\left(ab-a-b+1\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(a-1\right)\left(b-1\right)=0\)
Đến đây tự làm nhé
6\(x\) - 18 > 4\(x\) - 6
6\(x\) - 4\(x\) > - 6 + 18
2\(x\) > 12
\(x>12:2\)
\(x\) > 6
Vậy \(x\) > 6