Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt ƯCLN(3n-2;4n-3)=d => 3n-2 chia hết cho d và 4n-3 chia hết cho d
=>4(3n-2) chia hết cho d và 3(4n-3) chia hết cho d
=>12n-8 chia hết cho d và 12n-9 chia hết cho d
=>(12n-8)-(12n-9) chia hết cho d
=>1 chia hết cho d
=>d=1
ƯCLN(3n-2;4n-3)=1 => phân số \(\frac{3n-2}{4n-3}\) tối giản
Đặt ƯCLN(4n+1;6n+1)=m => 4n+1 chia hết cho m và 6n+1 chia hết cho m
=>3(4n+1) chia hết cho m và 2(6n+1) chia hết cho m
=>12n+3 chia hết cho m và 12n+2 chia hết cho m
=>(12n+3)-(12n+2) chia hết cho m
=>1 chia hết cho m
=>m=1
ƯCLN(3n-2;4n-3)=1 => phân số \(\frac{4n+1}{6n+1}\) tối giản
a) Gọi (2n+2,8n+7) là d \(\left(d\inℕ^∗\right)\)
Vì (2n+2,8n+7) là d
\(\Rightarrow\hept{\begin{cases}2n+2⋮d\\8n+7⋮d\end{cases}}\)
\(\Rightarrow\)(2n+2)-(8n+7)\(⋮\)d
\(\Rightarrow\)(8n+8)-(8n+7)\(⋮\)d
\(\Rightarrow\)1\(⋮\)d
\(\Rightarrow\)d=1
\(\Rightarrow\)(2n+2,8n+7)=1 nên tử số và mẫu số là số nguyên tố cùng nhau
\(\Rightarrow\frac{2n+2}{8n+7}\)là phân số tối giản
Vậy \(\frac{2n+2}{8n+7}\)là phân số tối giản.
Các phần sau tương tự.
gọi d là ƯC(5n + 4; 5n + 11)
\(\Rightarrow\hept{\begin{cases}5n+4⋮d\\5n+11⋮d\end{cases}\Rightarrow\hept{\begin{cases}15n+12⋮d\\15n+11⋮d\end{cases}}}\)
\(\Rightarrow15n+12-15n-11⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d\in\left\{\pm1\right\}\)
\(\Rightarrow\frac{5n+4}{5n+11}\) là phân số tối giản
Đặt UCLN(2n + 1 ; 4n + 3) = d
2n + 1 chia hết cho d => 4n + 2 chia hết cho
Mà UCLN(4n + 2 ; 4n + 3) = 1
=> d = 1 => DPCM