
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Ta có :
A = 1 - 6 + 62 - 63 + ... + 698 - 699 + 6100
6A = 6 - 62 + 63 - 64 + ... + 697 - 698 + 699
6A + A = (6 - 62 + 63 - 64 + ... + 697 - 698 + 699) + (1 - 6 + 62 - 63 + ... + 698 - 699 + 6100)
7A = 1 + 6100
A = (1 + 6100) : 7
Ủng hộ mk nha !!! ^_^
Ta có
6A=6-62+63-64+...-6100+6101
+
A=1-6+62-63+...-699+6100
-----------------------------------------------------
=>7A=6101+1
=>A=(6101+1):7
Chúc bạn học giỏi nha!!!

a)\(\frac{4^5.9^4-2.6^9}{2^{10}.3^8+6^8.20}=\frac{\left(2^2\right)^5.\left(3^2\right)^4-2.\left(2.3\right)^9}{2^{10}.3^8+\left(3.2\right)^8.2^2.5}=\frac{2^{10}.3^8-2.2^9.3^9}{2^{10}.3^8+3^8.2^8.2^2.5}=\frac{2^{10}.3^8-2^{10}.3^9}{2^{10}.3^8+3^8.2^{10}.5}\)
\(=\frac{2^{10}.3^8.\left(1-3\right)}{2^{10}.3^8.\left(1+5\right)}=\frac{-2}{6}=\frac{-1}{3}\)
b) đặt A=2100 - 299 + 298 - 297 +...+ 22 - 2
=>2A=2101-2100+299-298+...+23-22
=>2A+A=2101-2100+299-298+...+23-22+2100 - 299 + 298 - 297 +...+ 22 - 2
=>3A=2101-2
=>A=\(\frac{2^{101}-2}{3}\)

Giải :
(27x + 3 5).6 4 = 6.6 8
27x + 3 5 = 6.6 8 : 6 4
27x + 3 5 = 6.6 4
27x + 3 5 = 7776
27x = 7776 - 3 5
27x = 7776 - 243
27x = 7533
x = 7533 : 27
x = 279
Vậy x = 279
Trả lời :
\(\left(27.x+3^5\right).6^4=6.6^8\)
\(27x+3^5=6.6^8\div6^4\)
\(27x+3^5=6.6^4\)
\(27x+3^5=7776\)
\(27x=7776-3^5\)
\(27x=7776-234\)
\(27x=7533\)
\(\Rightarrow x=279\)
~HT~


- \(\frac{4^6.3^4.9^5}{6^{12}}=\frac{\left(2^2\right)^6.3^4.\left(3^2\right)^5}{\left(2.3\right)^{12}}=\frac{2^{12}.3^4.3^{10}}{2^{12}.3^{12}}=\frac{2^{12}.3^{14}}{2^{12}.3^{12}}=3^2=9\)
- \(\frac{3^{10}.11+9^5.5}{3^9.2^4}=\frac{3^{10}.11+\left(3^2\right)^5.5}{3^9.16}=\frac{3^{10}.11+3^{10}.5}{3^9.16}=\frac{3^{10}.\left(11+5\right)}{3^9.16}=\frac{3^{10}.16}{3^9.16}=3\)
- 2100 - 299 - 298 - ... - 22 - 2
= 2100 - (299 + 298 + ... + 22 + 2)
Đặt A = 299 + 298 + ... + 22 + 2
2A = 2100 + 299 + ... + 23 + 22
2A - A = (2100 + 299 + ... + 23 + 22) - (299 + 298 + ... + 22 + 2)
A = 2100 - 2
Ta có:
2100 - 299 - 298 - ... - 22 - 2
= 2100 - (2100 - 2)
= 2100 - 2100 + 2
= 0 + 2
= 2
- 38 : 36 + (22)4 : 29
= 32 + 28 : 29
\(=9+\frac{1}{2}\)
\(=\frac{18}{2}+\frac{1}{2}=\frac{19}{2}\)

Bài 1:
\(A=1^3+2^3+...+99^3+100^3\)
\(=\left(1+2+...+100\right)^2\)
\(=\left[\frac{100\cdot\left(100+1\right)}{2}\right]^2\)
\(=5050^2=25502500\)
A= 13 + 23 + 33 + ... + 1003
= 1 + 2 + 1.2.3 + 2.3.4 + ... + 100 + 99.100.101
= ( 1 + 2 + 3 + ... + 100) + ( 1.2.3 + 2.3.4 + ... + 99.100.101 )
= 5050 + 101989800
= 101994850
Ta có: \(6.6^2.6^3.....6^{99}=6^{1+2+3+...+99}\)
Đặt \(A=1+2+3+...+99\)
\(\Leftrightarrow A=\frac{\left(99+1\right).99}{2}\)
\(\Leftrightarrow A=4950\)
Vậy \(6.6^2.6^3.....6^{99}=6^{4950}\)