Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(ĐKXĐ:\hept{\begin{cases}x\ne0\\x\ne30\\x\ne24\end{cases}}\)
Ta có \(\frac{60}{\frac{120}{x}-4}+\frac{60}{\frac{120}{x}-5}=x\)
\(\Leftrightarrow\frac{60}{\frac{120-4x}{x}}+\frac{60}{\frac{120-5x}{x}}=x\)
\(\Leftrightarrow\frac{60x}{120-4x}+\frac{60x}{120-5x}=x\)
\(\Leftrightarrow\frac{60}{120-4x}+\frac{60}{120-5x}=1\left(Do\text{ }x\ne0\right)\)
\(\Leftrightarrow\frac{15}{30-x}=1-\frac{12}{24-x}\)
\(\Leftrightarrow\frac{15}{30-x}=\frac{24-x-12}{24-x}\)
\(\Leftrightarrow\frac{15}{30-x}=\frac{12-x}{24-x}\)
\(\Leftrightarrow360-15x=\left(12-x\right)\left(30-x\right)\)
\(\Leftrightarrow360-15x=360-42x+x^2\)
\(\Leftrightarrow x^2-27x=0\)
\(\Leftrightarrow x\left(x-27\right)=0\)
\(\Leftrightarrow x=27\left(Tm\text{ }ĐKXĐ\right)\)
\(\frac{60}{x+5}+\frac{60}{x-4}=\frac{120}{x}\Rightarrow\frac{1}{x+5}+\frac{1}{x-4}=\frac{2}{x}\)
\(\Rightarrow\frac{x\left(x-4\right)+x\left(x+5\right)-2\left(x+5\right)\left(x-4\right)}{x\left(x+5\right)\left(x-4\right)}=0\)
\(\Rightarrow\frac{x^2-4x+x^2+5x-2x^2-2x+40}{x\left(x+5\right)\left(x-4\right)}=0\)
\(\frac{-x+40}{x\left(x+5\right)\left(x-4\right)}=0\)
mà x(x+5)(x-4) khác 0 nên
-x+40=0
nên x=40
b: \(\Leftrightarrow\dfrac{20}{x}-\dfrac{20}{x+20}=\dfrac{1}{6}\)
=>\(\dfrac{20x+400-20x}{x\left(x+20\right)}=\dfrac{1}{6}\)
=>x*(x+20)=400*6=2400
=>x^2+20x-2400=0
=>(x+60)(x-40)=0
=>x=-60 hoặc x=40
c: \(\dfrac{2x+1}{2x-1}-\dfrac{2x-1}{2x+1}=\dfrac{8}{4x^2-1}\)
=>(2x+1)^2-(2x-1)^2=8
=>4x^2+4x+1-4x^2+4x-1=8
=>8x=8
=>x=1(nhận)
Bài làm:
1) đk: \(x\ne0;x\ne-5\)
Ta có: \(\frac{30}{x}-\frac{30}{x+5}=1\)
\(\Leftrightarrow\frac{30\left(x+5\right)-30x}{x\left(x+5\right)}=1\)
\(\Leftrightarrow x^2+5x=150\)
\(\Leftrightarrow x^2+5x-150=0\)
\(\Leftrightarrow\left(x-10\right)\left(x+15\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-10=0\\x+15=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=10\\x=-15\end{cases}}\)
2) đk: \(x\ne0;x\ne-2\)
Ta có: \(\frac{60}{x}-\frac{60}{x+2}=1\)
\(\Leftrightarrow\frac{60\left(x+2\right)-60x}{x\left(x+2\right)}=1\)
\(\Leftrightarrow x^2+2x=120\)
\(\Leftrightarrow x^2+2x-120=0\)
\(\Leftrightarrow\left(x-10\right)\left(x+12\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-10=0\\x+12=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=10\\x=-12\end{cases}}\)
\(\frac{30}{x}-\frac{30}{x+5}=1\)( ĐKXĐ : \(x\ne0;x\ne-5\))
<=> \(30\left(\frac{1}{x}-\frac{1}{x+5}\right)=1\)
<=> \(30\left(\frac{x+5}{x\left(x+5\right)}-\frac{x}{x\left(x+5\right)}\right)=1\)
<=> \(30\left(\frac{5}{x\left(x+5\right)}\right)=1\)
<=> \(\frac{5}{x\left(x+5\right)}=\frac{1}{30}\)
<=> \(5\cdot30=x\left(x+5\right)\)
<=> \(x^2+5x-150=0\)
<=> \(x^2+15x-10x-150=0\)
<=> \(x\left(x+15\right)-10\left(x+15\right)=0\)
<=> \(\left(x-10\right)\left(x+15\right)=0\)
<=> \(\orbr{\begin{cases}x-10=0\\x+15=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=10\\x=-15\end{cases}}\)( tmđk )
Vậy S = { 10 ; -15 }
\(\frac{60}{x}-\frac{60}{x+2}=1\)( ĐKXĐ : \(x\ne0;x\ne-2\))
<=> \(60\left(\frac{1}{x}-\frac{1}{x+2}\right)=1\)
<=> \(60\left(\frac{x+2}{x\left(x+2\right)}-\frac{x}{x\left(x+2\right)}\right)=1\)
<=> \(60\left(\frac{2}{x\left(x+2\right)}\right)=1\)
<=> \(\frac{2}{x\left(x+2\right)}=\frac{1}{60}\)
<=> \(2\cdot60=x\left(x+2\right)\)
<=> \(x^2+2x-120=0\)
<=> \(x^2+12x-10x-120=0\)
<=> \(x\left(x+12\right)-10\left(x+12\right)=0\)
<=> \(\left(x-10\right)\left(x+12\right)=0\)
<=> \(\orbr{\begin{cases}x-10=0\\x+12=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=10\\x=-12\end{cases}}\)
Vậy S = { 10 ; -12 }
f: \(=\dfrac{2x^3-10x^2-11x^2+55x+12x-60}{x-5}=2x^2-11x+12\)