Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho thêm điều kiện x,y thuộc Z nữa nhá
\(\frac{3}{x}+\frac{1}{3}=\frac{y}{3}\)
\(\frac{3}{x}=\frac{y-1}{3}\)
\(\Rightarrow x.\left(y-1\right)=9\)
Lập bảng ta có :
x | 1 | 9 | -1 | -9 | 3 | -3 |
y-1 | 9 | 1 | -9 | -1 | 3 | -3 |
y | 10 | 2 | -8 | 0 | 4 | -2 |
Vậy ( x ; y ) = { ( 1 ; 10 ) ; ( 9 ; 2 ) ; ( -1 ; -8 ) ; ( -9 ; 0 ) ; ( 3 ; 4 ) ; ( -3 ; -2 ) }
mấy bài còn lại làm tương tự
Thay 6 = x+y
A= \(\frac{4x+y}{3x+\left(x+y\right)}+\frac{4y+x-2.\left(x+y\right)}{3y-\left(x+y\right)}\)
A= \(\frac{4x+y}{4x+y}+\frac{4y+x-2x-2y}{3y-x-y}\)
A=\(1+\frac{2y-x}{2y-x}\)= 1+1=2
\(c)\)
\(2x-\frac{1}{2}-\frac{1}{6}-\frac{1}{12}-...-\frac{1}{49.50}=\left(7-\frac{1}{50}+x\right)\)
\(\Rightarrow2x-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{49.50}\right)=\left(\frac{350}{50}-\frac{1}{50}+x\right)\)
\(\Rightarrow2x-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\right)=\frac{349}{50}+x\)
\(\Rightarrow2x-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\right)-x=\frac{349}{50}\)
\(\Rightarrow x-\left(1-\frac{1}{50}\right)=\frac{349}{50}\)
\(\Rightarrow x-\frac{49}{50}=\frac{349}{50}\)
\(\Rightarrow x=\frac{349}{50}+\frac{49}{50}\)
\(\Rightarrow x=\frac{199}{25}\)
Vậy \(x=\frac{199}{25}\)
~ Ủng hộ nhé
\(a)2.x-3=x+\frac{1}{2}\)
\(\Rightarrow2x-3-x=\frac{1}{2}\)
\(\Rightarrow x-3=\frac{1}{2}\)
\(\Rightarrow x=\frac{1}{2}+3\)
\(\Rightarrow x=\frac{1}{2}+\frac{6}{2}\)
\(\Rightarrow x=\frac{7}{2}\)
Vậy \(x=\frac{7}{2}\)
\(b)4.x-\left(2.x+1\right)=3-\frac{1}{3}+x\)
\(\Rightarrow4.x-2.x-1=\frac{9}{3}-\frac{1}{3}+x\)
\(\Rightarrow2.x-1=\frac{8}{3}+x\)
\(\Rightarrow2x-1-x=\frac{8}{3}\)
\(\Rightarrow x-1=\frac{8}{3}\)
\(\Rightarrow x=\frac{8}{3}+1\)
\(\Rightarrow x=\frac{8}{3}+\frac{3}{3}\)
\(\Rightarrow x=\frac{11}{3}\)
Vậy \(x=\frac{11}{3}\)
~ Ủng hộ nhé
a, \(\left(x-\frac{1}{2}\right)^3=\frac{1}{27}\)\(\Rightarrow\left(x-\frac{1}{2}\right)^3=\left(\frac{1}{3}\right)^3\)\(\Rightarrow x-\frac{1}{2}=\frac{1}{3}\)\(\Rightarrow x=\frac{5}{6}\)
b, \(\left(x-1\right)^{x+2}=\left(x-1\right)^{x+6}\)
\(\Rightarrow\left(x-1\right)^{x+2}-\left(x-1\right)^{x+6}=0\)
\(\Rightarrow\left(x-1\right)^{x+2}\left[1-\left(x-1\right)^4\right]=0\)
\(\Rightarrow\orbr{\begin{cases}\left(x-1\right)^{x+2}=0\\1-\left(x-1\right)^4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x-1=0\\\left(x-1\right)^4=1\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\\left(x-1\right)^4=1\end{cases}}\)
Giải: \(\left(x-1\right)^4=1\)\(\Rightarrow\orbr{\begin{cases}x-1=1\\x-1=-1\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=0\end{cases}}\)
c, Vì \(\left(x+20\right)^{100}\ge0\)\(\forall x\inℝ\); \(\left|y+4\right|\ge0\)\(\forall y\inℝ\)
\(\Rightarrow\left(x+20\right)^{100}+\left|y+4\right|\ge0\)\(\forall x,y\inℝ\)
Dấu " = " xảy ra <=> \(\hept{\begin{cases}x+20=0\\y+4=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-20\\y=-4\end{cases}}\)
d, \(2^{x-1}=16\)\(\Rightarrow2^{x-1}=2^4\)=> x - 1 = 4 => x = 5
mình chỉ tính thôi vì ko thấy x,y nên ko biết đúng nha
2-1*3+1=12+?
2-3+1=12+?
-1+1=12+?
0=12+?
0=12+(-12)
-->số cần tìm là (-12)
\(\frac{6^x}{2^{2000}}=3^y\Leftrightarrow\frac{2^x.3^x}{3^y}=2^{2000}\Leftrightarrow2^x.3^{x-y}=2^{2000}\)
Vì \(2^{2000}\)không chia hết cho 3 nên \(3^{x-y}=1\Leftrightarrow x-y=0\Leftrightarrow x=y\)
Khi đó \(2^x=2^{2000}\Leftrightarrow x=2000\Rightarrow y=2000\)
Mình ko ghi áp dụng tính chất dãy bằng nhau nx nhé
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+y+z}{2+3+4}=2\Rightarrow x=2.2=4;y=2.3=6;z=2.4=8\)
\(\frac{x}{5}=\frac{y}{-6}=\frac{z}{7}=\frac{-z}{-7}=\frac{x+y-z}{5-6-7}=\frac{32}{-8}=-4\Leftrightarrow x=-20;y=24;z=-28\)
\(\frac{2x}{10}=\frac{3y}{6}=\frac{5z}{15}=\frac{2x-3y+5z}{10-6+15}=\frac{38}{19}=2\Rightarrow x=10;y=4;z=6\)
Lời giải :
Theo đề bài ta có \(\frac{x}{\frac{5}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{6}{5}}\Leftrightarrow\frac{2x}{5}=\frac{3y}{4}=\frac{5z}{6}\)
Đặt \(\frac{2x}{5}=\frac{3y}{4}=\frac{5z}{6}=k\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{5k}{2}\\z=\frac{6k}{5}\end{cases}}\)
Mặt khác : \(\frac{x}{2}=\frac{z-28}{3}\)
\(\Leftrightarrow3x-2z=-56\)
\(\Leftrightarrow3\cdot\frac{5k}{2}-2\cdot\frac{6k}{5}=-56\)
\(\Leftrightarrow k=\frac{-560}{51}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{-1400}{51}\\y=\frac{-2240}{153}\\z=\frac{-224}{17}\end{cases}}\)
\(B=x+y-z=\frac{-1400}{51}+\frac{-2240}{153}-\frac{-224}{17}=\frac{-4424}{153}\)