K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2017

MN // DE nên DM, NE cắt nhau tại điểm I và

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

Lại có

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

Mặt khác:

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

Đáp án A.

17 tháng 6 2017

Đáp án C

9 tháng 12 2021

9 tháng 12 2021

19 tháng 3 2019

a) Giao tuyến của các cặp mặt phẳng

*Giao tuyến của (AEC) và (BFD)

• Trong hình thang ABCD, AC cắt DB tại G, ta có:

Giải bài 1 trang 77 sgk Hình học 11 | Để học tốt Toán 11

Tương tự, AE cắt BF tại H,

Ta có :

Giải bài 1 trang 77 sgk Hình học 11 | Để học tốt Toán 11 ⇒ H ∈ (AEC) ∩ (BFD).

Vậy GH = (AEC) ∩ (BFD)

*Giao tuyến của (BCE) và (ADF)

Trong hình thang ABCD, BC cắt AD tại I, ta có: I ∈ (BCE) ∩ (ADF)

Trong hình thang ABEF, BE cắt AF tại K, ta có: K ∈ (BCE) ∩ (ADF)

Vậy IK = (BCE) ∩ (ADF)

b) Giao điểm của AM với mp(BCE)

Trong mp(ADF), AM cắt IK tại N, ta có:

N ∈ IK ⊂ (BCE)

Vậy N = AM ∩ (BCE).

c) Giả sử AC cắt BF.

⇒ Qua AC và BF xác định duy nhất 1 mặt phẳng.

Mà qua A và BF có duy nhất mặt phẳng (ABEF)

⇒ AC ⊂ (ABEF)

⇒ C ∈ (ABEF) (Vô lý).

Vậy AC và BF không cắt nhau.

4 tháng 1 2019

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a)

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Mà AD, AF ⊂ (ADF)

Nên (ADF) // (BCE)

b) Vì ABCD và ABEF là các hình vuông nên AC = BF. Ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

So sánh (1) và (2) ta được:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

c) Từ chứng minh trên suy ra DF // (MM′N′N)

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Mà DF,EF ⊂ (DEF) nên (DEF) // (MM′N′N)

Vì MN ⊂ (MM′N′N) và (MM′N′N) // (DEF) nên MN // (DEF).

6 tháng 2 2019

31 tháng 3 2017

a) Trong (ABCD) : AC ∩ BD = I, Trong ( ABEF): AE ∩ BF = J

=> (ACE) ∩ (BDF) = IJ

Tương tự (BCE) ∩ ( ADF) = GH

b) Trong (AGH): AM ∩ GH = N, chứng minh N AM và N (BCE)

c) Chứng minh bằng phương pháp phản chứng. Giả sử AC và BE cùng nằm trong một mặt phẳng, lập luận dẫn tới (ABCD) ≡ (ABEF), trái với giả thiết


QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

loading...

 

a) \(ABC{\rm{D}}\) là hình vuông \( \Rightarrow AD\parallel BC\)

Mà \(A{\rm{D}} \subset \left( {ADF} \right)\)

\( \Rightarrow BC\parallel \left( {A{\rm{D}}F} \right)\)

\(ABC{\rm{D}}\) là hình vuông \( \Rightarrow AF\parallel BE\)

Mà \(A{\rm{F}} \subset \left( {ADF} \right)\)

\( \Rightarrow BE\parallel \left( {A{\rm{D}}F} \right)\)

Ta có:

\(\left. \begin{array}{l}BC\parallel \left( {A{\rm{D}}F} \right)\\BE\parallel \left( {A{\rm{D}}F} \right)\\BC,BE \subset \left( {CBE} \right)\end{array} \right\} \Rightarrow \left( {CBE} \right)\parallel \left( {A{\rm{D}}F} \right)\)

b) Do \(ABCD\) và \(ABEF\) là hai hình vuông có chung cạnh \(AB\) nên các đường chéo \(AC,BF\) bằng nhau.

Theo đề bài ta có: \(AM = BN\)

\( \Rightarrow \)\(\frac{{AM}}{{AC}} = \frac{{BN}}{{BF}}\)

Ta có:

\(MM'\parallel C{\rm{D}} \Rightarrow \frac{{AM}}{{AC}} = \frac{{AM'}}{{A{\rm{D}}}}\)

\(NN'\parallel AB \Rightarrow \frac{{BN}}{{BF}} = \frac{{AN'}}{{AF}}\)

\(\left. \begin{array}{l} \Rightarrow \frac{{AM'}}{{A{\rm{D}}}} = \frac{{AN'}}{{AF}} \Rightarrow M'N'\parallel DF\\M'N' \subset \left( {MNN'M'} \right)\end{array} \right\} \Rightarrow DF\parallel \left( {MNN'M'} \right)\)

\(\left. \begin{array}{l}NN'\parallel EF\\{\rm{NN}}' \subset \left( {MNN'M'} \right)\end{array} \right\} \Rightarrow EF\parallel \left( {MNN'M'} \right)\)

\(\left. \begin{array}{l}DF\parallel \left( {MNN'M'} \right)\\EF\parallel \left( {MNN'M'} \right)\\C{\rm{D}},DF \subset \left( {DEF} \right)\end{array} \right\} \Rightarrow \left( {DEF} \right)\parallel \left( {MNN'M'} \right)\)

 

25 tháng 5 2017

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song