Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) => y+42+2y= -12-14+2y
y+2y-2y = -12-14-42
y= -68
b) => 15+y-5-5y= -12-5y
y-5y+5y= -12-15+5
y = -22
c) => 2y+5-8y+21= -3-5y-2
2y-8y+5y= -3-2-5-21
-y= -31=>y=31
d)=> -13+3y+23= -120+y
3y-y= -120+13-23
2y= -130=>y= -65
e) => -21+32+5y= 16+4y
5y-4y= 16+21-32
y= 5
bài 1
a)y-(-42-2y) = (-12) - 14 +2y
y +42 + 2y = -12 -14 +2y
3y + 42 = -26 +2y
y = -68
b)15-(-y+5)-5y=-(12+5y+2)
15+y-5-5y=-12-5y-2
10-4y=-14-5y
-4y+5y=-14-10=-24
c)2y-(-5+8y-21)=-3-(5y+2)
2y+5-8y+21=-3y-5y-2
-6y+26=-8y-2
-6y+8y=-2-26
2y=-28
y=-28/2=-14
3x+5y=13 và y=2x=> 3x+10x=13=>x(3+10)=>x=1
2x-3y=4 và x=y+5 =>2(y+5)-3y=4=>y=6
Giải:
a) \(-47+5y=3y-69\)
\(\Leftrightarrow5y-3y=-69+47\)
\(\Leftrightarrow2y=-22\)
\(\Leftrightarrow y=-\dfrac{22}{2}=-11\)
Vậy ...
b) \(\left(96-8y\right)+5y=-174\)
\(\Leftrightarrow96-8y+5y=-174\)
\(\Leftrightarrow96-3y=-174\)
\(\Leftrightarrow-3y=-174-96=-270\)
\(\Leftrightarrow y=\dfrac{-270}{-3}=90\)
Vậy ...
c) \(\left|7-2\right|=y+2\)
\(\Leftrightarrow5=y-2\)
\(\Leftrightarrow y=5+2=7\)
Vậy ...
a, 3x ( y+1) + y + 1 = 7
(y+1)(3x +1) =7
th1 : \(\left\{{}\begin{matrix}y+1=1\\3x+1=7\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=0\\x=2\end{matrix}\right.\)
th2: \(\left\{{}\begin{matrix}y+1=-1\\3x+1=-7\end{matrix}\right.\)=> x = -8/3 (loại)
th3: \(\left\{{}\begin{matrix}y+1=7\\3x+1=1\end{matrix}\right.\)=> \(\left\{{}\begin{matrix}y=6\\x=0\end{matrix}\right.\)
th 4 : \(\left\{{}\begin{matrix}y+1=-7\\3x+1=-1\end{matrix}\right.\)=> x=-2/3 (loại)
Vậy (x,y)= (2 ;0); (0; 6)
b, xy - x + 3y - 3 = 5
(x( y-1) + 3( y-1) = 5
(y-1)(x+3) = 5
th1: \(\left\{{}\begin{matrix}y-1=1\\x+3=5\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=2\\x=8\end{matrix}\right.\)
th2: \(\left\{{}\begin{matrix}y-1=-1\\x+3=-5\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=0\\x=-8\end{matrix}\right.\)
th3: \(\left\{{}\begin{matrix}y-1=5\\x+3=1\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=6\\x=-2\end{matrix}\right.\)
th4: \(\left\{{}\begin{matrix}y-1=-5\\x+3=-1\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=-4\\x=-4\end{matrix}\right.\)
vậy (x, y) = ( 8; 2); ( -8; 0); (-2; 6); (-4; -4)
c, 2xy + x + y = 7 => y = \(\dfrac{7-x}{2x+1}\) ; y ϵ Z ⇔ 7-x ⋮ 2x+1
⇔ 14 - 2x ⋮ 2x + 1 ⇔ 15 - 2x - 1 ⋮ 2x + 1
th1 : 2x + 1 = -1=> x = -1; y = \(\dfrac{7-(-1)}{-1.2+1}\) = -8
th2: 2x+ 1 = 1=> x =0; y = 7
th3: 2x+1 = -3 => x = x=-2 => y = \(\dfrac{7-(-2)}{-2.2+1}\) = -3
th4: 2x+ 1 = 3 => x = 1 => y = \(\dfrac{7+1}{2.1+1}\) = 2
th5: 2x + 1 = -5 => x = -3=> y = \(\dfrac{7-(-3)}{-3.2+1}\) = -2
th6: 2x + 1 = 5 => x = 2; ; y = \(\dfrac{7-2}{2.2+1}\) =1
th7 : 2x + 1 = -15 => x = -8; y = \(\dfrac{7-(-8)}{-8.2+1}\) = -1
th8 : 2x+1 = 15 => x = 7; y = \(\dfrac{7-7}{2.7+1}\) = 0
kết luận
(x,y) = (-1; -8); (0 ;7); ( -2; -3) ; ( 1; 2); ( -3; -2); (2;1); (-8;-1);(7;0)
3xy−2x+5y=293xy−2x+5y=29
9xy−6x+15y=879xy−6x+15y=87
(9xy−6x)+(15y−10)=77(9xy−6x)+(15y−10)=77
3x(3y−2)+5(3y−2)=773x(3y−2)+5(3y−2)=77
(3y−2)(3x+5)=77(3y−2)(3x+5)=77
⇒(3y−2)⇒(3y−2) và (3x+5)(3x+5) là Ư(77)=±1,±7,±11,±77Ư(77)=±1,±7,±11,±77
Ta có bảng giá trị sau:
Do x,y∈Zx,y∈Z nên (x,y)∈{(−4;−3),(−2;−25),(2;3),(24;1)}
Bài 2:
a: =6(15-5)=6*10=60
b: =9(-3+23)=9*20=180
c: =11(-10+210)=11*200=2200
d: =125*4+125*4=125*8=1000