Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
e) 96-5(2x-1)=41
5(2x-1)= 96-41
5(2x-1)=55
2x-1=55:5
2x-1=11
2x=11+1
2x=12
x=12:2
x=6
tính :
a)\(\frac{459}{987}\cdot\left(\frac{1}{4}+\frac{1}{12}-\frac{1}{3}\right)-\frac{2009}{2010}\)
\(=\frac{459}{987}\cdot\left(\frac{3}{12}+\frac{1}{12}-\frac{4}{12}\right)-\frac{2009}{2010}\)
\(=\frac{459}{987}\cdot0-\frac{2009}{2010}\)
\(=\frac{-2009}{2010}\)
b) \(\frac{-9}{7}-\frac{5}{7}\cdot\left[\left(\frac{-2}{3}\right)^2-1\right]\div\frac{-5}{9}\)
\(=\frac{-9}{7}-\frac{5}{7}\cdot\left[\frac{4}{9}-1\right]\div\frac{-5}{9}\)
\(=\frac{-9}{7}-\frac{5}{7}\cdot\frac{-5}{9}\div\frac{-5}{9}\)
\(=\frac{-9}{7}-\frac{5}{7}\)
\(=-2\)
tìm x:
a) \(\left(x-\frac{7}{18}\right)-\frac{15}{27}=\frac{-10}{27}\)
\(\left(x-\frac{7}{18}\right)=\frac{-10}{27}+\frac{15}{27}\)
\(\left(x-\frac{7}{18}\right)=\frac{5}{27}\)
\(x=\frac{5}{27}+\frac{7}{18}\)
\(\Rightarrow x=\frac{31}{54}\)
b) \(\left(3\frac{1}{2}-2x\right)\cdot\frac{11}{3}=7\frac{1}{3}\)
\(\left(\frac{7}{2}-2x\right)\cdot\frac{11}{3}=\frac{22}{3}\)
\(\left(\frac{7}{2}-2x\right)=\frac{22}{3}\div\frac{11}{3}\)
\(\left(\frac{7}{2}-2x\right)=2\)
\(2x=\frac{7}{2}-2\)
\(x=\frac{3}{2}\div2=\frac{3}{4}\)
\(\Rightarrow x=\frac{3}{4}\)
a) x+(x+1)+(x+2)+...+(x+2010)=2029099
<=>2011x+(1+2+3+...+2010)=2029099
<=>2011x+2021055=2029099
<=>2011x = 8044 <=> =4
b) 5x-14=x+34
<=> 5x-x = 34+14
<=> 4x = 48 => x = 12
c) (x+5) .(x+9) =0 <=>
x+5 = 0 --> x = -5
hoặc x+9 = 0 --> x = -9
Ta có :
+) \(A=\dfrac{1+9+9^2+...+9^{2009}}{1+9+9^2+...+9^{2009}}+\dfrac{9^{2010}}{1+9+9^2+...+9^{2009}}\)
\(A=1+1:\dfrac{1+9+9^2+...+9^{2009}}{9^{2010}}\)
\(A=1+1:\left(\dfrac{1}{9^{2010}}+\dfrac{1}{9^{2009}}+...+\dfrac{1}{9}\right)\)
+) \(B=\dfrac{1+5+5^2+...+5^{2009}}{1+5+5^2+...+5^{2009}}+\dfrac{5^{2010}}{1+5+5^2+...+5^{2009}}\)
\(B=1+1:\dfrac{1+5+5^2+...+5^{2009}}{5^{2010}}\)
\(B=1+1:\left(\dfrac{1}{5^{2010}}+\dfrac{1}{5^{2009}}+...+\dfrac{1}{5}\right)\)
Vì \(\dfrac{1}{9^{2010}}< \dfrac{1}{5^{2010}}\)
\(\dfrac{1}{9^{2009}}< \dfrac{1}{5^{2009}}\) (ngoặc cả mấy cài so sánh này vào rôi mời suy ra nhé)
.............................
\(\dfrac{1}{9}< \dfrac{1}{5}\)
\(\)=> \(\dfrac{1}{9^{2010}}+\dfrac{1}{9^{2009}}+...+\dfrac{1}{9}< \dfrac{1}{5^{2010}}+\dfrac{1}{5^{2009}}+...+\dfrac{1}{5}\)
=> \(1:\left(\dfrac{1}{9^{2010}}+\dfrac{1}{9^{2009}}+...+\dfrac{1}{9}\right)>1:\left(\dfrac{1}{5^{2010}}+\dfrac{1}{5^{2009}}+...+\dfrac{1}{5}\right)\)
=> \(1+1:\left(\dfrac{1}{9^{2010}}+\dfrac{1}{9^{2009}}+...+\dfrac{1}{9}\right)>1+1:\left(\dfrac{1}{5^{2010}}+\dfrac{1}{5^{2009}}+...+\dfrac{1}{5}\right)\)
Hay A > B
A = \(1+\frac{9^{2010}}{1+9+9^2+....+9^{2009}}\)= \(1+1:\frac{1+9+9^2+....+9^{2009}}{9^{2010}}\)= \(1+1:\left(\frac{1}{9^{2010}}+\frac{1}{9^{2009}}+\frac{1}{9^{2008}}+...+\frac{1}{9}\right)\)
B = \(1+\frac{5^{2010}}{1+5+5^2+....+5^{2009}}\)= \(1+1:\frac{1+5+5^2+...+5^{2009}}{5^{2010}}\)= \(1+1:\left(\frac{1}{5^{2010}}+\frac{1}{5^{2009}}+...+\frac{1}{5}\right)\)
Do \(\frac{1}{9^{2010}}<\frac{1}{5^{2010}}\) ; \(\frac{1}{9^{2009}}<\frac{1}{5^{2009}}\) ;.....; \(\frac{1}{9}<\frac{1}{5}\)
=> \(\frac{1}{9^{2010}}+\frac{1}{9^{2009}}+...+\frac{1}{9}<\frac{1}{5^{2010}}+\frac{1}{5^{2009}}+...+\frac{1}{5}\)
=> 1:\(\left(\frac{1}{9^{2010}}+\frac{1}{9^{2009}}+...+\frac{1}{9}\right)>1:\left(\frac{1}{5^{2010}}+\frac{1}{5^{2009}}+...+\frac{1}{5}\right)\)
Vậy A > B
Đặt M = \(1+9+9^2+......+9^{2010}\)
\(9M=9+9^2+9^3+......+9^{2011}\)
\(9M-M=8M=9^{2011}-1\)
Đặt K = \(1+9+9^2+......+9^{2009}\)
\(9K=9+9^2+9^3+.....+9^{2010}\)
\(9K-K=8K=9^{2010}-1\)
\(\Rightarrow A=\frac{9^{2011}-1}{9^{2010}-1}\)
Đặt H=\(1+5+5^2+....+5^{2010}\)
\(5H=5+5^2+......+5^{2011}\)
\(5H-H=4H=5^{2011}-1\)
ĐẶT G = \(1+5+5^2+.......+5^{2009}\)
\(5G-G=4G=5^{2010}-1\)
\(\Rightarrow B=\frac{5^{2011}-1}{5^{2010}-1}\)
Rồi bạn so sánh sẽ ra ngay