Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt M = \(1+9+9^2+......+9^{2010}\)
\(9M=9+9^2+9^3+......+9^{2011}\)
\(9M-M=8M=9^{2011}-1\)
Đặt K = \(1+9+9^2+......+9^{2009}\)
\(9K=9+9^2+9^3+.....+9^{2010}\)
\(9K-K=8K=9^{2010}-1\)
\(\Rightarrow A=\frac{9^{2011}-1}{9^{2010}-1}\)
Đặt H=\(1+5+5^2+....+5^{2010}\)
\(5H=5+5^2+......+5^{2011}\)
\(5H-H=4H=5^{2011}-1\)
ĐẶT G = \(1+5+5^2+.......+5^{2009}\)
\(5G-G=4G=5^{2010}-1\)
\(\Rightarrow B=\frac{5^{2011}-1}{5^{2010}-1}\)
Rồi bạn so sánh sẽ ra ngay
A = \(1+\frac{9^{2010}}{1+9+9^2+....+9^{2009}}\)= \(1+1:\frac{1+9+9^2+....+9^{2009}}{9^{2010}}\)= \(1+1:\left(\frac{1}{9^{2010}}+\frac{1}{9^{2009}}+\frac{1}{9^{2008}}+...+\frac{1}{9}\right)\)
B = \(1+\frac{5^{2010}}{1+5+5^2+....+5^{2009}}\)= \(1+1:\frac{1+5+5^2+...+5^{2009}}{5^{2010}}\)= \(1+1:\left(\frac{1}{5^{2010}}+\frac{1}{5^{2009}}+...+\frac{1}{5}\right)\)
Do \(\frac{1}{9^{2010}}
Ta có :
+) \(A=\dfrac{1+9+9^2+...+9^{2009}}{1+9+9^2+...+9^{2009}}+\dfrac{9^{2010}}{1+9+9^2+...+9^{2009}}\)
\(A=1+1:\dfrac{1+9+9^2+...+9^{2009}}{9^{2010}}\)
\(A=1+1:\left(\dfrac{1}{9^{2010}}+\dfrac{1}{9^{2009}}+...+\dfrac{1}{9}\right)\)
+) \(B=\dfrac{1+5+5^2+...+5^{2009}}{1+5+5^2+...+5^{2009}}+\dfrac{5^{2010}}{1+5+5^2+...+5^{2009}}\)
\(B=1+1:\dfrac{1+5+5^2+...+5^{2009}}{5^{2010}}\)
\(B=1+1:\left(\dfrac{1}{5^{2010}}+\dfrac{1}{5^{2009}}+...+\dfrac{1}{5}\right)\)
Vì \(\dfrac{1}{9^{2010}}< \dfrac{1}{5^{2010}}\)
\(\dfrac{1}{9^{2009}}< \dfrac{1}{5^{2009}}\) (ngoặc cả mấy cài so sánh này vào rôi mời suy ra nhé)
.............................
\(\dfrac{1}{9}< \dfrac{1}{5}\)
\(\)=> \(\dfrac{1}{9^{2010}}+\dfrac{1}{9^{2009}}+...+\dfrac{1}{9}< \dfrac{1}{5^{2010}}+\dfrac{1}{5^{2009}}+...+\dfrac{1}{5}\)
=> \(1:\left(\dfrac{1}{9^{2010}}+\dfrac{1}{9^{2009}}+...+\dfrac{1}{9}\right)>1:\left(\dfrac{1}{5^{2010}}+\dfrac{1}{5^{2009}}+...+\dfrac{1}{5}\right)\)
=> \(1+1:\left(\dfrac{1}{9^{2010}}+\dfrac{1}{9^{2009}}+...+\dfrac{1}{9}\right)>1+1:\left(\dfrac{1}{5^{2010}}+\dfrac{1}{5^{2009}}+...+\dfrac{1}{5}\right)\)
Hay A > B
a,Ta co:\(A=\frac{2005^{2005}+1}{2005^{2006}+1}<\frac{2005^{2005}+1+2004}{2005^{2006}+1+2004}=\frac{2005^{2005}+2005}{2005^{2006}+2005}\)
\(=\frac{2005\left(2005^{2004}+1\right)}{2005\left(2005^{2005}+1\right)}=\frac{2005^{2004}+1}{2005^{2005}+1}\) =B Vay A<B
b,lam tuong tu nhu y a
Số số hạng của dãy:(2010-7):1+1=2004(số)
Vậy có tất cả:2004:2=1002(cặp)
A=7-8+9-10+11-12+...+2009-2010
A=(7-8)+(9-10)+(11-12)+...+(2009-2010)
A=-1+(-1)+(-1)+...+(-1)
Vậy A=(-1)*1002=-1002
A = 1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 + ... + 2005 + 2006 - 2007 - 2008 + 2009 + 2010 ( có 2010 số )
A = ( 1 + 2 - 3 - 4 ) + ( 5 + 6 - 7 - 8 ) + .... + ( 2005 + 2006 - 2007 - 2008 ) + ( 2009 + 2010 )
A = ( - 4 ) + ( - 4 ) + ... + ( - 4 ) + 4019 ( có 503 số )
A = ( - 4 ) . 502 + 4019
A = - 2008 + 4019
A = 2011.
CHÚC LÀM BÀI VUI VẺ
Bài 1:
a)12,5 x (-5/7) + 1,5 x (-5/7)
=-5/7*(12,5+1,5)
=-5/7*14
=-10
b)(-1/4) x (6|2/11) + 3|9/11 x (-1/4)
=-1/4*(68/11+42/11)
=-1/4*10
=-5/2
c tương tự
d)\(\frac{9^8\cdot4^3}{27^4\cdot6^5}=\frac{\left(3^2\right)^8\cdot\left(2^2\right)^3}{\left(3^3\right)^4\cdot\left(2\cdot3\right)^5}=\frac{3^{16}\cdot2^6}{3^{12}\cdot2^5\cdot3^5}=\frac{3^{16}\cdot2^5\cdot2}{3^{16}\cdot3^1\cdot2^5}=\frac{2}{3}\)
Bài 2:
a)Ta có:
2800=(28)100=256100
8200=(82)100=64100
Vì 256100>64100 =>2800>8200
b)Ta có:
1245=(123)15=172815
Vì 62515<172815 =>62515<1245