\(^2\) + 12x + 1 

tìm gtln gtnn giúp tui với

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2022

\(-5\left(x^2-\dfrac{2.6}{5}+\dfrac{36}{25}-\dfrac{36}{25}\right)+1=-5\left(x-\dfrac{6}{5}\right)^2+\dfrac{41}{5}\le\dfrac{41}{5}\)

Dấu ''='' xảy ra khi x = 6/5 

19 tháng 8 2022

.

18 tháng 10 2018

\(A=\frac{2}{-5x^2+3x+2}=\frac{2}{\left(-5x^2+3x-\frac{9}{20}\right)+\frac{49}{20}}\)

\(A=\frac{2}{-5\left(x^2-\frac{3}{5}+\frac{9}{100}\right)+\frac{49}{20}}=\frac{2}{-5\left(x-\frac{3}{10}\right)^2+\frac{49}{20}}\ge\frac{2}{\frac{49}{20}}=\frac{40}{49}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(-5\left(x-\frac{3}{10}\right)^2=0\)\(\Leftrightarrow\)\(x=\frac{3}{10}\)

Vậy GTNN của \(A\) là \(\frac{40}{49}\) khi \(x=\frac{3}{10}\)

\(B=\frac{5}{5x^2+4x+1}=\frac{5}{\left(5x^2+4x+\frac{4}{5}\right)+\frac{1}{5}}\)

\(B=\frac{5}{5\left(x^2+\frac{4}{5}x+\frac{4}{25}\right)+\frac{1}{5}}=\frac{5}{5\left(x+\frac{2}{5}\right)^2+\frac{1}{5}}\le\frac{5}{\frac{1}{5}}=25\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(5\left(x+\frac{2}{5}\right)^2=0\)\(\Leftrightarrow\)\(x=\frac{-2}{5}\)

Vậy GTLN của \(B\) là \(25\) khi \(x=\frac{-2}{5}\)

Chúc bạn học tốt ~ 

18 tháng 10 2018

a) Ta có: A bé nhất khi \(-5x^2+3x+2\) lớn nhất

Ta có: \(-5x^2+3x+2=\left(-5x^2+3x-\frac{9}{20}\right)+\frac{49}{20}\)

\(=-5\left(x^2-2.\frac{3}{10}+\frac{9}{100}\right)=-5\left(x-\frac{3}{10}\right)^2+\frac{49}{20}\le\frac{49}{20}\)

Do đó \(A=\frac{2}{-5\left(x-\frac{3}{10}\right)^2+\frac{49}{20}}\le\frac{40}{49}\)

Dấu "=" xảy ra \(\Leftrightarrow-5\left(x-\frac{3}{10}\right)^2=0\Leftrightarrow x=\frac{3}{10}\)

Vậy \(A_{max}=\frac{40}{49}\Leftrightarrow x=\frac{3}{10}\)

b) Để B lớn nhất thì \(5x^2+4x+1\) bé nhất.Ta có:

\(5x^2+4x+1=\left(5x^2+4x\right)+1\)

\(=5\left(x^2+\frac{4}{5}x\right)+1=5\left(x^2+2.\frac{4}{10}+\frac{4}{25}\right)+\frac{1}{5}\)

\(=5\left(x+\frac{2}{5}\right)^2+\frac{1}{5}\ge\frac{1}{5}\)

Do đó \(B=\frac{5}{5\left(x+\frac{2}{5}\right)^2}\le\frac{5}{\frac{1}{5}}=25\)

Dấu "=" xảy ra \(\Leftrightarrow5\left(x+\frac{2}{5}\right)^2=0\Leftrightarrow x=-\frac{2}{5}\)

Vậy \(B_{max}=25\Leftrightarrow x=-\frac{2}{5}\)

16 tháng 1 2019

a, GTLN của A = 6 

2 tháng 4 2017

A+1=(27-12x)/(x^2+9)+1

A+1=(x^2-12x+36)/(x^2+9)

A+1=(x-6)^2/(x^2+9)>=0

Min A+1=0

Min A=-1

Dấu = xảy ra khi và chỉ khi x=6

4-A=4-(27-12x)/(x^2+9)

4-A=(4x^2+36-27+12x)/(x^2+9)

4-A=(4x^2+12x+9)/(x^2+9)

4-A=(2x+3)^2/(x^2+9)

A=4-(2x+3)^2/(x^2+9)<=4

Max A=4 

Dấu = xảy ra khi và chỉ khi x=-3/2 

15 tháng 1 2019

Bài 2 :

a) \(P=x^2+y^2+xy+x+y\)

\(2P=2x^2+2y^2+2xy+2x+2y\)

\(2P=x^2+2xy+y^2+x^2+2x+1+y^2+2y+1-2\)

\(2P=\left(x+y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2-2\)

\(P=\frac{\left(x+y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2-2}{2}\)

\(P=\frac{\left(x+y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2}{2}-1\le-1\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+y=0\\x+1=0\\y+1=0\end{cases}}\)

Mình nghĩ đề phải là tìm GTLN của \(P=x^2+y^2+xy+x-y\)hoặc đổi dấu x và y thì dấu "=" mới xảy ra đc

17 tháng 1 2019

@ Phương ơi ! Cái dòng \(P=\)cuối ấy . Chỗ đấy là \(\ge-1\)em nhé!

24 tháng 7 2019

Khó phết chứ chả đùa

24 tháng 7 2019

Bài 1:

1.Đặt \(A=x^2+y^2-3x+2y+3\)

\(=x^2-2.x.\frac{3}{2}+\frac{9}{4}-\frac{9}{4}+y^2+2y+1+2\)

\(=\left(x-\frac{3}{2}\right)^2+\left(y+1\right)^2-\frac{9}{4}+2\)

\(=\left(x-\frac{3}{2}\right)^2+\left(y+1\right)^2-\frac{1}{4}\)

Vì \(\hept{\begin{cases}\left(x-\frac{3}{2}\right)^2\ge0;\forall x\\\left(y+1\right)^2\ge0;\forall y\end{cases}}\)

\(\Rightarrow\left(x-\frac{3}{2}\right)^2+\left(y+1\right)^2\ge0;\forall x,y\)

\(\Rightarrow\left(x-\frac{3}{2}\right)^2+\left(y+1\right)^2-\frac{1}{4}\ge0-\frac{1}{4};\forall x,y\)

Hay \(A\ge\frac{-1}{4};\forall x,y\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-\frac{3}{2}\right)^2=0\\\left(y+1\right)^2=0\end{cases}}\)

                       \(\Leftrightarrow\hept{\begin{cases}x=\frac{3}{2}\\y=-1\end{cases}}\)

VẬY MIN A=\(\frac{-1}{4}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{3}{2}\\y=-1\end{cases}}\)

18 tháng 10 2018

Đặt \(A=7x^2+5x+3\)

\(A=\left(7x^2+5x+\frac{25}{28}\right)+\frac{59}{28}\)

\(A=7\left(x^2+\frac{5}{7}x+\frac{25}{196}\right)+\frac{59}{28}\)

\(A=7\left(x+\frac{5}{14}\right)^2+\frac{59}{28}\ge\frac{59}{28}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(7\left(x+\frac{5}{14}\right)^2=0\)\(\Leftrightarrow\)\(x=\frac{-5}{14}\)

Vậy GTNN của \(A\) là \(\frac{59}{28}\) khi \(x=\frac{-5}{14}\)

Đặt \(B=-3x^2-3x+5\)

\(B=\left(-3x^2-3x-\frac{3}{4}\right)+\frac{23}{4}\)

\(B=-3\left(x^2+x+\frac{1}{4}\right)+\frac{23}{4}\)

\(B=-3\left(x+\frac{1}{2}\right)^2+\frac{23}{4}\le\frac{23}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(-3\left(x+\frac{1}{2}\right)^2=0\)\(\Leftrightarrow\)\(x=\frac{-1}{2}\)

Vậy GTLN của \(B\) là \(\frac{23}{4}\) khi \(x=\frac{-1}{2}\)

Chúc bạn học tốt ~ 

18 tháng 10 2018

Ta có:

\(7x^2+5x+3=7\left(x^2+\frac{5}{7}x+\frac{3}{7}\right)\)

\(=7\left(x^2+\frac{5}{7}x+\frac{25}{196}+\frac{59}{196}\right)\)

\(=7\left(x+\frac{5}{14}\right)^2+\frac{59}{28}\ge\frac{59}{28}\)

\(-3x^2-3x+5=-3\left(x^2+x-5\right)\)

\(=-3\left(x^2+x+\frac{1}{4}-\frac{21}{4}\right)=-3\left(x+\frac{1}{2}\right)^2+\frac{63}{4}\le\frac{63}{4}\)

5 tháng 3 2019

bn lên ngạng hoặc và xem câu hỏi tương tự nha!

Nhớ k mk đấy nha!

thanks nhìu!

OK..OK..OK

1 tháng 11 2018

kb nha

1 tháng 11 2018

a) \(B=-x^2+18x+19\)

\(B=-\left(x^2-2\cdot x\cdot9+9^2-100\right)\)

\(B=-\left[\left(x-9\right)^2-100\right]\)

\(B=100-\left(x-9\right)^2\le100\forall x\)( tự lí luận )

Dấu "=" xảy ra \(\Leftrightarrow x-9=0\Leftrightarrow x=9\)

Vậy Bmax = 100 khi và chỉ khi x = 9

b) \(A=2x^2+12x+11\)

\(A=2\left(x^2+6x+\frac{11}{2}\right)\)

\(A=2\left(x^2+2\cdot x\cdot3+3^2-\frac{7}{2}\right)\)

\(A=2\left[\left(x+3\right)^2-\frac{7}{2}\right]\)

\(A=2\left(x+3\right)^2-7\ge-7\forall x\)( tự lí luận )

Dấu "=" xảy ra \(\Leftrightarrow x+3=0\Leftrightarrow x=-3\)

Vậy Amin = -7 khi và chỉ khi x = -3