Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) = (x+3).(x-3)^2-(x-3)(x+3)^2
=(x^2-9)(x-3)-(x^2-9)(x+3)
=(x^2-9)(x-3-x-3)
=-6(x^2-9)
các câu còn lại tương tự
\(a,\left(x+3\right)\left(x^2-3x+9\right)-\left(x-3\right)\left(x^2+3x+9\right)\)
\(=x^3+3-\left(x^3-3\right)\)
\(=x^3+3-x^3+3\)
\(=6\)
\(b,\left(x-5\right)\left(x^2+5x+25\right)-\left(x+5\right)\left(x^2-5x+25\right)\)
\(=x^3-5^3-x^3-5^3\)
\(=-125-125\)
\(=-250\)
Bài 2:
a: \(\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
\(1,\\ a,=7x^3-49x^2+21x\\ b,=x^2-x-42\\ c,=x^2-16x+64\\ d,=9x^2+12x+4\\ e,=x^2-16-25+10x-x^2=10x-41\\ 2,\\ a,\Rightarrow2\left(x-7\right)=19\\ \Rightarrow x-7=\dfrac{19}{2}\Rightarrow x=\dfrac{33}{2}\\ b,\Rightarrow4x^2-20x+25-4x^2+3x-2x=50\\ \Rightarrow-19x=25\Rightarrow x=-\dfrac{25}{19}\)
\(a,=x^2-4x+4-\dfrac{15}{4}=\left(x-2\right)^2-\dfrac{15}{4}=\left(x-2-\dfrac{\sqrt{15}}{2}\right)\left(x-2+\dfrac{\sqrt{15}}{2}\right)\\ b,=?\\ c,\Rightarrow x^2+7x-8=0\\ \Rightarrow\left(x+8\right)\left(x-1\right)=0\Rightarrow\left[{}\begin{matrix}x=-8\\x=1\end{matrix}\right.\\ d,Sửa:x^3-3x^2=-27+9x\\ \Rightarrow x^3-3x^2+9x-27=0\\ \Rightarrow x^2\left(x-3\right)+9\left(x-3\right)=0\\ \Rightarrow\left(x^2+9\right)\left(x-3\right)=0\Rightarrow\left[{}\begin{matrix}x^2=-9\left(vô.lí\right)\\x=3\end{matrix}\right.\\ \Rightarrow x=3\\ e,\Rightarrow x\left(x-3\right)-7x+21=0\\ \Rightarrow x\left(x-3\right)-7\left(x-3\right)=0\\ \Rightarrow\left(x-7\right)\left(x-3\right)=0\Rightarrow\left[{}\begin{matrix}x=7\\x=3\end{matrix}\right.\\ f,\Rightarrow x^2\left(x-2\right)+\left(x-2\right)=0\\ \Rightarrow\left(x^2+1\right)\left(x-2\right)=0\Rightarrow\left[{}\begin{matrix}x^2=-1\left(vô.lí\right)\\x=2\end{matrix}\right.\\ \Rightarrow x=2\)
\(g,\Rightarrow x^2-4x+4=0\\ \Rightarrow\left(x-2\right)^2=0\\ \Rightarrow x=2\\ h,Sửa:x^3-x^2+x=1\\ \Rightarrow x^2\left(x-1\right)+\left(x-1\right)=0\\ \Rightarrow\left(x^2+1\right)\left(x-1\right)=0\Rightarrow\left[{}\begin{matrix}x^2=-1\left(vô.lí\right)\\x=1\end{matrix}\right.\\ \Rightarrow x=1\)
a) Đặt x^2+2x+2=t
\(\frac{4}{t-1}+\frac{3}{t+1}=\frac{3}{2}\Leftrightarrow\frac{4t+4+3t-3}{t^2-1}=\frac{7t+1}{t^2-1}=\frac{3}{2}\)
\(\Leftrightarrow14t+2=3t^2-3\Leftrightarrow3t^2-14t-5=3t\left(t-5\right)+t-5=0\)\(\Leftrightarrow\left(t-5\right)\left(3t+1\right)=0\Rightarrow\left[\begin{matrix}t=5\\t=-\frac{1}{3}\left(loai\right)\end{matrix}\right.\)
Với t=5 ta có (x+1)^2=4\(\Rightarrow\left[\begin{matrix}x+1=2\\x+1=-2\end{matrix}\right.\Rightarrow\left\{\begin{matrix}x=1\\x=-3\end{matrix}\right.\)
`a,4x-10=0 `
`<=> 4x=10`
`<=>x=10/4`
`<=>x=5/2`
`b, 7-3x=9-x `
`<=>-3x+x=9-7`
`<=>-2x=2`
`<=>x=-1`
`c, 2x-(3-5x) = 4(x+3)`
`<=>2x-3+5x=4x+12`
`<=>2x+5x-4x=12+3`
`<=>3x=15`
`<=>x=5`
`d, 5-(6-x)=4(3-2x) `
`<=>5-6+x=12-8x`
`<=>x+8x=12-5+6`
`<=>9x=13`
`<=>x=13/9`
`e, 4(x+3)=-7x+17 `
`<=>4x+12=-7x+17`
`<=>4x+7x=17-12`
`<=>11x=5`
`<=>x=5/11`
`f, 5(x-3) - 4=2(x-1)+7`
`<=>5x-15-4=2x-2+7`
`<=>5x-2x=15+4-2+7`
`<=>3x=24`
`<=>x=8`
`g, 5(x-3)-4=2(x-1)+7 `
`<=>5x-15-4=2x-2+7`
`<=>5x-2x=15+4-2+7`
`<=>3x=24`
`<=>x=8`
`h,4(3x-2)-3(x-4)=7x+20`
`<=>12x-8-3x+12=7x+20`
`<=>12x-3x-7x=20+8+12`
`<=>2x=40`
`<=>x=20`