Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
/x+1/=6+3+2x=9+2x
=> \(\left[{}\begin{matrix}x+1=9+2x\\x+1=-\left(9+2x\right)\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x+8=0\\3x=-10\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=-8\\x=-\dfrac{10}{3}\end{matrix}\right.\)
\(\left(2x-3\right)^2=16\)
\(\Rightarrow\left(2x-3\right)^2=4^2\)
\(\Rightarrow2x-3=4\)
\(\Rightarrow2x=4+3\)
\(\Rightarrow2x=7\)
\(\Rightarrow x=\frac{7}{2}\)
Nghe đề cứ vô lí kiểu j ấy
Sau khi thu gọn ta có: \(y-x=14\)
\(x;y\in Z\Rightarrow\) có vô vàn đáp số cả đời người kể ko hết ấy
Từ 2x=3y=4z \(\Rightarrow\)\(\frac{x}{6}\)=\(\frac{y}{4}\)=\(\frac{z}{3}\) áp dụng tính chất dãy tỉ số bằng nhau, ta được:
\(\frac{x}{6}\) =\(\frac{y}{4}\)=\(\frac{z}{3}\)= \(\frac{y-x+z}{4-6+3}\)=\(\frac{2013}{1}\)= 2013
\(\Rightarrow\)x=2013.6=12078
\(\Rightarrow\)y= 2013.4=8052
\(\Rightarrow\)z=2013.3=6039
Vậy: x=12078
y=8052
z=6039
HOK TỐT!
@LOANPHAN.
\(\frac{x-1}{2000}+\frac{x-3}{1998}+\frac{x-5}{1996}+\frac{x}{667}=6\)
\(\Rightarrow\frac{x-1}{2000}+\frac{x-3}{1998}+\frac{x-5}{1996}+\frac{x}{667}-6=0\)
\(\Rightarrow\left(\frac{x-1}{2000}-1\right)+\left(\frac{x-3}{1998}+1\right)+\left(\frac{x-5}{1996}-1\right)+\left(\frac{x}{667}-3\right)=0\)
\(\Rightarrow\frac{x-1-2000}{2000}+\frac{x-3-1998}{1998}+\frac{x-5-1996}{1996}+\frac{x-3.667}{667}=0\)
\(\Rightarrow\frac{x-2001}{2000}+\frac{x-2001}{1998}+\frac{x-2001}{1996}+\frac{x-2001}{667}=0\)
\(\Rightarrow\left(x-2001\right)\left(\frac{1}{2000}+\frac{1}{1998}+\frac{1}{1996}+\frac{1}{667}\right)=0\)
Ta có: \(\frac{1}{2000}+\frac{1}{1998}+\frac{1}{1996}+\frac{1}{667}\ne0\)
\(\Rightarrow x-2001=0\Rightarrow x=2001\)
Tìm x :
x + {(x-3) - [(x+3) - (-x - 2)]} =x
Ai nhanh mik tick nha mik đang cần gấp mong mng giúp mik
x + {(x - 3) - [(x + 3) - (-x - 2)]} = x
=> x + {x - 3 - [x + 3 + x + 2]} = x
=> x + {x - 3 - x - 3 - x - 2} = x
=> x + x - 3 - x - 3 - x - 2 = x
=> (x - x) + (x - x) - (3 + 3 + 2) = x
=> 0 + 0 - 8 = x
=> - 8 = x
vậy x = - 8
=>(x-3)-[(x+3)-(-x-2)]=0
=>(x-3)-(x+3+x+2)=0
=>x-3-2x-5=0
=>-x-8=0
=>-x=8=>x=-8
Ta có:
x = \(\frac{17^{16}-3}{17^{16}+1}=\frac{17^{16}+1-4}{17^{16}+1}=\frac{17^{16}+1}{17^{16}+1}-\frac{4}{17^{16}+1}=1-\frac{4}{17^{16}+1}\)
y = \(\frac{17^{17}-3}{17^{17}+1}=\frac{17^{17}+1-4}{17^{17}+1}=\frac{17^{17}+1}{17^{17}+1}-\frac{4}{17^{17}+1}=1-\frac{4}{17^{17}+1}\)
Do \(\frac{4}{17^{16}+1}>\frac{4}{17^{17}+1}\) => \(-\frac{4}{17^{16}+1}< -\frac{4}{17^{17}+1}\) => \(1-\frac{4}{17^{16}+1}< 1-\frac{4}{17^{17}+1}\)
=> x < y
\(\left(567-x\right)+121=641\)
\(\left(567-x\right)=641-121=520\)
\(x=567-520=47\)
\(\left(567-x\right)+121=641\)
\(567-x=641-121\)
\(567-x=520\)
\(x=567-520\)
\(x=47\)