Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(A>\frac{1}{3^2}+\frac{1}{4.5}+\frac{1}{5.6}+....+\frac{1}{50.51}\)
\(\Rightarrow A>\frac{1}{3^2}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+.....+\frac{1}{50}-\frac{1}{51}\)
\(\Rightarrow A>\frac{1}{9}+\frac{1}{4}-\frac{1}{51}=\frac{1}{4}+\left(\frac{1}{9}-\frac{1}{51}\right)\)
Dễ thấy 1/9 > 1/51
=> 1/9 - 1/51 > 0
\(\Rightarrow a>\frac{1}{4}+\frac{1}{9}-\frac{1}{51}>\frac{1}{4}\)
=> A>1/4
\(1.a.\frac{x}{7}=\frac{6}{21}=\frac{6:3}{21:3}=\frac{2}{7}\Rightarrow x=2\\ b.\frac{-5}{y}=\frac{20}{28}=\frac{20:\left(-4\right)}{28:\left(-4\right)}=\frac{-5}{-7}\Rightarrow y=-7\)
\(2.a.\frac{a}{-b}=\frac{a\left(-1\right)}{-b\left(-1\right)}=\frac{-\left(a.1\right)}{-\left[-\left(b.1\right)\right]}=\frac{-a}{b}\\ b.\frac{-a}{-b}=\frac{-a\left(-1\right)}{-b\left(-1\right)}=\frac{-\left[-\left(a.1\right)\right]}{-\left[-\left(b.1\right)\right]}=\frac{a}{b}\)
\(3.\frac{3}{-4}=\frac{-3}{4}\\ \frac{-5}{-7}=\frac{5}{7}\\ \frac{2}{-9}=\frac{-2}{9}\\ \frac{-11}{-10}=\frac{11}{10}\)
\(4.\frac{3}{6}=\frac{2}{4}\\ \frac{6}{3}=\frac{4}{2}\\ \frac{2}{3}=\frac{4}{6}\\ \frac{3}{2}=\frac{6}{4}\)
Bài 1:
a, \(\frac{x}{7}\)=\(\frac{6}{21}\)⇒x.21=6.7⇒x.21=42⇒x=2
b,\(\frac{-5}{y}=\frac{20}{28}\)⇒-5.28= 20.y⇒-140=20.y⇒y =-7
Bài 2:
a, \(\frac{a}{-b}\)= \(\frac{a.\left(-1\right)}{-b.\left(-1\right)}\)=\(\frac{-a}{b}\)
b, \(\frac{-a}{-b}=\frac{-a.\left(-1\right)}{-b.\left(-1\right)}=\frac{a}{b}\)
Bài 3:
1,\(\frac{3}{-4}=\frac{-3}{4}\)
2,\(\frac{-5}{-7}=\frac{5}{7}\)
3,\(\frac{2}{-9}=\frac{-2}{9}\)
4,\(\frac{-11}{-10}=\frac{11}{10}\)
Bài 4 :
\(\frac{3}{6}=\frac{2}{4}\) ;
\(\frac{6}{3}=\frac{4}{2}\);
\(\frac{3}{2}=\frac{6}{4}\);
\(\frac{2}{3}=\frac{4}{6}\).
Bài 1.
\(\frac{75}{100}+\frac{18}{21}+\frac{19}{32}+\frac{1}{4}+\frac{3}{21}+\frac{3}{32}\)
\(=\left(\frac{75}{100}+\frac{1}{4}\right)+\left(\frac{18}{21}+\frac{3}{21}\right)+\left(\frac{19}{32}+\frac{3}{32}\right)\)
\(=1+1+\frac{11}{16}\)
\(=2+\frac{11}{16}\) \(=\frac{43}{16}\)
Đặt \(B=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2007.2008}\)
Ta có:
\(A=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2008^2}\)\(< \)\(B=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2007.2008}\left(1\right)\)
Mà \(B=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2007.2008}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2007}-\frac{1}{2008}\)
\(=1-\frac{1}{2008}< 1\left(2\right)\)
Từ (1) và (2) \(\Rightarrow A< B< 1\Rightarrow A< 1\) (đpcm)
a)\(\frac{5}{21}\)+\(\frac{-3}{7}\)<\(\frac{x}{21}\)<\(\frac{-2}{7}\)+\(\frac{8}{21}\)
\(\Rightarrow\)\(\frac{-4}{21}\)<\(\frac{x}{21}\)<\(\frac{2}{21}\)
\(\Rightarrow\)\(\frac{x}{21}\)\(\in\)\(\left\{\frac{-3}{21};\frac{-2}{21};\frac{-1}{21};\frac{0}{21};\frac{1}{21}\right\}\)
vậy x\(\in\)\(\left\{-3;-2;-1;0;1\right\}\)