Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\sqrt{9x+9}+\sqrt{4x+4}-2\sqrt{16x+16}=\sqrt{x+1}-8\)
\(\Leftrightarrow3\sqrt{x+1}+2\sqrt{x+1}-8\sqrt{x+1}-\sqrt{x+1}=-8\)
\(\Leftrightarrow\sqrt{x+1}=2\)
\(\Leftrightarrow x+1=4\)
hay x=3
a) ( x - 3)4 + ( x - 5)4 = 82
Đặt : x - 4 = a , ta có :
( a + 1)4 + ( a - 1)4 = 82
⇔ a4 + 4a3 + 6a2 + 4a + 1 + a4 - 4a3 + 6a2 - 4a + 1 = 82
⇔ 2a4 + 12a2 - 80 = 0
⇔ 2( a4 + 6a2 - 40) = 0
⇔ a4 - 4a2 + 10a2 - 40 = 0
⇔ a2( a2 - 4) + 10( a2 - 4) = 0
⇔ ( a2 - 4)( a2 + 10) = 0
Do : a2 + 10 > 0
⇒ a2 - 4 = 0
⇔ a = + - 2
+) Với : a = 2 , ta có :
x - 4 = 2
⇔ x = 6
+) Với : a = -2 , ta có :
x - 4 = -2
⇔ x = 2
KL.....
b) ( n - 6)( n - 5)( n - 4)( n - 3) = 5.6.7.8
⇔ ( n - 6)( n - 3)( n - 5)( n - 4) = 1680
⇔ ( n2 - 9n + 18)( n2 - 9n + 20) = 1680
Đặt : n2 - 9n + 19 = t , ta có :
( t - 1)( t + 1) = 1680
⇔ t2 - 1 = 1680
⇔ t2 - 412 = 0
⇔ ( t - 41)( t + 41) = 0
⇔ t = 41 hoặc t = - 41
+) Với : t = 41 , ta có :
n2 - 9n + 19 = 41
⇔ n2 - 9n - 22 = 0
⇔ n2 + 2n - 11n - 22 = 0
⇔ n( n + 2) - 11( n + 2) = 0
⇔ ( n + 2)( n - 11) = 0
⇔ n = - 2 hoặc n = 11
+) Với : t = -41 ( giải tương tự )
@Giáo Viên Hoc24.vn
@Giáo Viên Hoc24h
@Giáo Viên
@giáo viên chuyên
@Akai Haruma
a, \(16x^2-5=0\)
\(\Rightarrow16x^2=5\)
\(\Rightarrow x^2=\frac{5}{16}\)
\(\Rightarrow x=\sqrt{\frac{5}{16}}\Rightarrow x=\frac{\sqrt{5}}{4}\)
b, \(2\sqrt{x-3}=4\)
\(\Rightarrow\sqrt{x-3}=4:2\)
\(\Rightarrow\sqrt{x-3}=2\)
\(\Rightarrow x-3=4\)
\(\Rightarrow x=4+3\)
\(\Rightarrow x=7\)
c, \(\sqrt{4x^2-4x+1}=3\)
\(\Rightarrow\sqrt{\left(2x-1\right)^2}=3\)
\(\Rightarrow2x-1=3\)
\(\Rightarrow2x=4\)
\(\Rightarrow x=2\)
d, \(\sqrt{x+3}\ge5\)
\(\Rightarrow x+3\ge25\)
\(\Rightarrow x\ge22\)
e, \(\sqrt{3x-1}< 2\)
\(\Rightarrow3x-1< 4\)
\(\Rightarrow3x< 5\)
\(\Rightarrow x< \frac{5}{3}\)
g, \(\sqrt{x^2-9}+\sqrt{x^2-6x+9}=0\)
\(\Rightarrow\sqrt{\left(x-3\right)\left(x+3\right)}+\sqrt{\left(x-3\right)^2}=0\)
\(\Rightarrow\sqrt{x-3}\left(\sqrt{x+3}+\sqrt{x-3}\right)=0\)
\(\left(\sqrt{x+3}+\sqrt{x-3}\right)>0\)
\(\Rightarrow\sqrt{x-3}=0\)
\(\Rightarrow x-3=0\)
\(\Rightarrow x=3\)
a) \(16x^2-5=0\)
\(\Leftrightarrow16x^2=5\)
\(\Leftrightarrow x^2=\frac{5}{16}\)
\(\Leftrightarrow x=\pm\sqrt{\frac{5}{16}}\)
b) \(2\sqrt{x-3}=4\)
\(\Leftrightarrow\sqrt{x-3}=2\)
\(\Leftrightarrow x-3=4\)
\(\Leftrightarrow x=7\)
c) \(\sqrt{4x^2-4x+1}=3\)
\(\Leftrightarrow\sqrt{\left(2x-1\right)^2}=3\)
\(\Leftrightarrow2x-1=3\)
\(\Leftrightarrow2x=4\)
\(\Leftrightarrow x=2\)
d) \(\sqrt{x+3}\ge5\)
\(\Leftrightarrow x+3\ge25\)
\(\Leftrightarrow x\ge22\)
e) \(\sqrt{3x-1}< 2\)
\(\Leftrightarrow3x-1< 4\)
\(\Leftrightarrow3x< 5\)
\(\Leftrightarrow x< \frac{5}{3}\)
g) \(\sqrt{x^2-9}+\sqrt{x^2-6x+9}=0\)
\(\Leftrightarrow\sqrt{\left(x-3\right)\left(x+3\right)}+\sqrt{\left(x-3\right)^2}=0\)
\(\Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}+\sqrt{x-3}\right)=0\)
Vì \(\left(\sqrt{x+3}+\sqrt{x-3}\right)>0\)
\(\Leftrightarrow\sqrt{x-3}=0\)
\(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=3\)
a) \(\sqrt[]{x^2-4x+4}=x+3\)
\(\Leftrightarrow\sqrt[]{\left(x-2\right)^2}=x+3\)
\(\Leftrightarrow\left|x-2\right|=x+3\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=x+3\\x-2=-\left(x+3\right)\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}0x=5\left(loại\right)\\x-2=-x-3\end{matrix}\right.\)
\(\Leftrightarrow2x=-1\Leftrightarrow x=-\dfrac{1}{2}\)
b) \(2x^2-\sqrt[]{9x^2-6x+1}=5\)
\(\Leftrightarrow2x^2-\sqrt[]{\left(3x-1\right)^2}=5\)
\(\Leftrightarrow2x^2-\left|3x-1\right|=5\)
\(\Leftrightarrow\left|3x-1\right|=2x^2-5\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=2x^2-5\\3x-1=-2x^2+5\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}2x^2-3x-4=0\left(1\right)\\2x^2+3x-6=0\left(2\right)\end{matrix}\right.\)
Giải pt (1)
\(\Delta=9+32=41>0\)
Pt \(\left(1\right)\) \(\Leftrightarrow x=\dfrac{3\pm\sqrt[]{41}}{4}\)
Giải pt (2)
\(\Delta=9+48=57>0\)
Pt \(\left(2\right)\) \(\Leftrightarrow x=\dfrac{-3\pm\sqrt[]{57}}{4}\)
Vậy nghiệm pt là \(\left[{}\begin{matrix}x=\dfrac{3\pm\sqrt[]{41}}{4}\\x=\dfrac{-3\pm\sqrt[]{57}}{4}\end{matrix}\right.\)