\(⋮\)29

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2018

Có : 5^214 + 5^213 - 5^212

= 5^212.(5^2+5-1)

= 5^212 . 29 chia hết cho 29

Tk mk nha

9 tháng 2 2019

bài 1 : thực hiện phép tính

a) 3.52+15.22-26:2

= 3.25 + 15.4 - 26 : 2

= 75 + 60 - 13

= 135 - 13

= 122

b) 20:22+59:58

= 20:4 + 5

= 5 + 5

= 10

c) 100:52+7.32

= 100:25 + 7.9

= 4 + 63

= 67

d) 295-(31-22.5)2

= 295-(31-4.5)2

= 295 - 112

= 295 - 121

= 174

e) (-47)-[(45.24-52.12):14]

= (-47)-[(45.16-25.12):14]

= (-47)-[(720-300):14]

= (-47)-( 420:14 )

= (-47) - 30

= -77

f) (-2011)+5.[300-(17-7)2]

= (-2011)+5.(300-102)

= (-2011)+5.(300-100)

= (-2011)+5.200

= (-2011)+1000

= -1011

g) 5.[29-(6-1)2]-129

= 5.(29-52)-129

= 5.(29-25)-129

= 5.4-129

= 20-129

= -109

Đúng thì tik cái nha ! Thanks nhiều ! hahahahahaha

11 tháng 7 2021

a) Ta có 120a + 36b = 12.10a + 12.3b = 12(10a + 3b) \(⋮\)12

b) Ta có 57 - 56 + 55 = 55(52 - 5 + 1) = 55.21 \(⋮\)21

c) Ta có 52012 + 52013 + 52014 = 52012(1 + 5 + 52) = 52012.31 \(⋮31\) 

d) Ta có 76 + 75 - 7=  74(72 + 7 - 1) = 74.55 = 73.7.11.5 = 73.5.77 \(⋮\)77 

a) Vì \(\hept{\begin{cases}120⋮12\\36⋮12\end{cases}\Rightarrow}\hept{\begin{cases}120a⋮12\\36b⋮12\end{cases}}\Rightarrow\left(120a+36b\right)⋮12\)

b) \(5^7-5^6+5^5=5^5\left(5^2-5+1\right)=5^5\left(25-6+1\right)=21.5^5⋮21\)

c)\(5^{2012}+5^{2013}+5^{2014}=5^{2012}\left(1+5+5^2\right)=5^{2012}\left(1+5+25\right)=31.5^{2012}⋮31\)

d)\(7^6+7^5-7^4=7^4\left(7^2+7-1\right)=7^4\left(49+7-1\right)=55.7^4=11.5.7^4⋮11\)

Dễ thấy : \(7^6+7^5-7^4⋮7\)

mà \(\left(11;7\right)=1\)

\(\Rightarrow7^6+7^5-7^4⋮77\)

1 tháng 12 2018

a)Ta có : 5\(^5\)- 5\(^4\) + 5\(^3\)

= 53(52 - 5 + 1 )

=5. 21 

Vì 21 \(⋮\)7 nên 21 . 53\(⋮\)7

Vậy 5-54 + 53 \(⋮\)7

 Mấy câu kia b giải tương tự nhé

a: \(\dfrac{4^5+4^5+4^5+4^5}{3^5+3^5+3^5+3^5}\cdot\dfrac{6^5+6^5+6^5+6^5+6^5+6^5}{2^5+2^5+2^5+2^5+2^5+2^5}=2^x\)

\(\Leftrightarrow2^x=\dfrac{4^5}{3^5}\cdot\dfrac{6^5}{2^5}=4^5=2^{10}\)

=>x=10

b: \(\left(x-1\right)^{x+4}=\left(x-1\right)^{x+2}\)

\(\Leftrightarrow\left(x-1\right)^{x+2}\left[\left(x-1\right)^2-1\right]=0\)

\(\Leftrightarrow x\left(x-1\right)^{x+2}\cdot\left(x-2\right)=0\)

hay \(x\in\left\{0;1;2\right\}\)

c: \(6\left(6-x\right)^{2003}=\left(6-x\right)^{2003}\)

\(\Leftrightarrow5\cdot\left(6-x\right)^{2003}=0\)

\(\Leftrightarrow6-x=0\)

hay x=6

26 tháng 7 2021

a) Ta có: \(\hept{\begin{cases}120a⋮12\\36b⋮12\end{cases}}\)

\(\Rightarrow\left(120a+36b\right)⋮12\)

b) Ta có: \(5^7-5^6+5^5=65625\)

Mà \(65625⋮21\)

\(\Rightarrow\left(5^7-5^6+5^5\right)⋮21\)

3 tháng 11 2017

a/ \(1+5+5^2+..........+5^{501}\)

\(=\left(1+5\right)+\left(5^2+5^3\right)+............+\left(5^{500}+5^{501}\right)\)

\(=1\left(1+5\right)+5^2\left(1+5\right)+...........+5^{500}\left(1+5\right)\)

\(=1.6+5^2.6+.............+5^{500}.6\)

\(=6\left(1+5^2+..........+5^{500}\right)⋮6\left(đpcm\right)\)

b/ \(2+2^2+2^3+............+2^{100}\)

\(=\left(2+2^2+2^3+2^4+2^5\right)+............+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)

\(=2\left(1+2+2^2+2^3+2^4\right)+............+2^{96}\left(1+2+2^2+2^3+2^4\right)\)

\(=2.31+..........+2^{96}.31\)

\(=31\left(2+........+2^{96}\right)⋮31\left(đpcm\right)\)

3 tháng 11 2017

a)1+5+5^2+5^3+........+5^501

= 6+(5^2+5^3)+(5^4+5^5)......+(5^500+5^501)

=6+150+150(5^2+5^3)+150(5^4+5^5).......150(5^499+5^500)

=6+150(5^2+5^3+.......+5^500)

mà 6 chia hết cho 6

150(5^2+5^3+.......+5^500) chia hết cho 6

=> 6+150(5^2+5^3+.......+5^500) chia hết cho 6

=> 6+150+150(5^2+5^3)+150(5^4+5^5).......150(5^499+5^500) chia hết cho 6

=> 6+(5^2+5^3)+(5^4+5^5)......+(5^500+5^501) chia hết cho 6

=> 1+5+5^2+5^3+........+5^501 chia hết cho 6

3 tháng 1 2018

a) 2017 + 5.[ 300 - \(\left(17-7\right)^2\)]

= 2017 + 5.[ 300 - \(10^2\)]

= 2017 + 5.[ 300 - 100]

= 2017 + 5. 200

= 2017 + 1000

= 3017

b) \(5^{27}\).5.\(5^{25}\)-|-125|

= \(5^{27}\). 5 . \(5^{25}\) - 125

= \(5^{53}\) - 125

= \(5^{53}\) - \(5^3\)

= \(5^{53}\)+ 3

c) (\(5^{25}\).18+ \(5^{15}\).7) : \(5^{17}\)

= [ (\(5^{25}\) . \(5^{15}\)) . ( 18 . 7) ] : \(5^{17}\)

= [ \(5^{40}\) . 126 ] : \(5^{17}\)

= [ \(5^{40}\) : \(5^{17}\) ] . 126

= \(5^{23}\) . 126

Phần c) chưa chắc làm đúng nha

Học tốt :'3

5 tháng 8 2020

Bg

c) 9 < 3x : 3 < 81

=> 32 < 3x - 1 < 34 

=> x - 1 = {2; 3; 4}

=> x = {3; 4; 5}

d) 5x . 5x + 1 . 5 x + 2 < 218 . 518 : 218 

=> 5x + x + 1 + x + 2 < 218 : 218 . 518 

=> 53x + 3 < 1.518 

=> 53.(x + 1) < 518 

=> 3.(x + 1) < 18

=> x + 1 < 18 : 3

=> x + 1 < 6

=> x < 6 - 1

=> x < 5

5 tháng 8 2020

c. \(9\le3^x:3\le81\)

\(\Rightarrow3^2\le3^{x-1}\le3^4\)

\(\Rightarrow3^{x-1}\in\left\{3^2;3^3;3^4\right\}\)

\(\Rightarrow x-1\in\left\{2;3;4\right\}\)

\(\Rightarrow x\in\left\{3;4;5\right\}\)

d. Thêm đk : x thuộc N

 \(5^x.5^{x+1}.5^{x+2}\le2^{18}.5^{18}:2^{18}\)

\(\Rightarrow5^{x+x+1+x+2}\le5^{18}\)

\(\Rightarrow x+x+x+1+2\le18\)

\(\Rightarrow3x+3\le18\)

\(\Rightarrow3\left(x+1\right)\le18\)

\(\Rightarrow x+1\le6\)

\(\Rightarrow x\le5\)

\(\Rightarrow x\in\left\{1;2;3;4;5\right\}\)