Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
500-{5.(409-(2³x3-21)²]-1724}
= 500-{5.(409-(8x3-21)²]-1724}
=500-{5.(409-(24-21)²]-1724}
=500-{5.(409-3²)-1724}
=500-{5.(409-9)-1724}
=500-{5.400-1724}
=500-{2000-1724}
=500-276
=224
Hok tốt!
cho A=2 mũ 0 + 2 mũ 1 + 2 mũ 2 + ...... +2 mũ 100 tổng A chia cho 7 dư mấy
TL:
1121 : 1119 + 25 x 8 : 217
= 231 : 209 + 10 x 8 : 34
= 1,1 + 2,35
= 3,45
sai xl
~HT~
Bài làm :
11^21:11^19+2^5x8:2^17
=11^2+2^5x2^3:2^17
=11^2+2^8:2^17
=121+1/512
=61953/512
Chắc sai mà hình như bn sai đề rồi
xét 2A=22+23+24+...+211
-A=2+22+23+......+210
A=211-2
ta thấy 2/3 dư 2
22=4/3 dư 2
23=8/3 3 dư 2
..................................
211/3 dư 2
=>211-2laf 1 số chia hết cho 3
2A=2(2+2^2+2^3+2^4+...+2^8+2^9+2^10)
2A=2^2+2^3+2^4+2^5+...+2^9+2^10+2^11)
2A-A=(2^2+2^3+2^4+2^5+...+2^9+2^10+2^11)-(2+2^2+2^3+2^4+...+2^8+2^9+2^10)
A=2^11-2
A=2046
Mà 2046 chia hết cho 3
Vậy A chia hết cho 3
Điều phải chứng minh
(2^4 x 5^2 x 11^2 x 7) : (2^3 x 5^3 x 7^2 x 11)
= (2^3 x 2 x 5^2 x 11 x 77) : ( 2^3 x 5^2 x 5 x 7 x 77) bỏ những số trùng nhau vì là phép nhân
= (2 x 11) : (5 x 7)
= 22/35
Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn nhé.
*Ta có: A\(=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(=\left(2+2^2\right)+2^2\times\left(2+2^2\right)+...+2^{2008}\times\left(2+2^2\right)\)
\(=\left(2+2^2\right)\times\left(1+2^2+2^3+...+2^{2008}\right)\)
\(=6\times\left(2^2+2^3+...+2^{2008}\right)\)
\(=3\times2\times\left(2^2+2^3+...+2^{2008}\right)\)
\(\Rightarrow A⋮3\)
*Ta có: A \(=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(=2\times\left(1+2+2^2\right)+2^4\times\left(1+2+2^2\right)+...+2^{2008}\times\left(1+2+2^2\right)\)
\(=\left(1+2+2^2\right)\times\left(2+2^4+2^7+...+2^{2008}\right)\)
\(=7\times\left(2+2^4+2^7+...+2^{2008}\right)\)
\(\Rightarrow A⋮7\)
Mình sửa lại đề C 1 chút xíu
*Ta có: C \(=3^1+3^2+3^3+3^4+...+3^{2010}\)
\(=\left(3+3^2\right)+3^2\times\left(3+3^2\right)+...+3^{2008}\times\left(3+3^2\right)\)
\(=\left(3+3^2\right)\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(=12\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(=4\times3\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(\Rightarrow C⋮4\)
Các câu khác làm tương tự nhé. Chúc bạn học tốt!