Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2.(1+2+3+4+.....+100).(89.2)
2.5050.89.2
2(5050.89)
=898900
(1+1+2+2+3+3+4+4+5+5+6+6+...+100+100)* (89 *2 )
=(1+100)+(1+100)+(2+99)+...+(54+57)+(55+56)+(55+56)*187
=101+101+101+...+101+101+101*187
=101*100*187
=10100*187=1888700
Mình làm mẫu 1 bài rùi bạn tự giải những bài còn lại nha
1, 7A = 7+7^2+7^3+....+7^2008
6A = 7A - A = (7+7^2+7^3+....+7^2008)-(1+7+7^2+....+7^2007) = 7^2008-1
=> A = (7^2008-1)/6
Tk mk nha
\(A=1+7+7^2+7^3+...+7^{2007}\)
\(\Rightarrow7A=7+7^2+7^3+7^4+...+7^{2008}\)
\(\Rightarrow7A-A=\left(7+7^2+7^3+...+7^{2008}\right)-\left(1+7+7^2+...+7^{2007}\right)\)
\(\Rightarrow6A=7^{2008}-1\)
\(\Rightarrow A=\frac{7^{2008}-1}{6}\)
\(\frac{4}{3\cdot5}+\frac{6}{5\cdot7}+\frac{8}{7\cdot9}+....+\frac{100}{99\cdot101}\)
\(=2\left(\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+....+\frac{1}{99\cdot100}\right)\)
\(=2\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+....+\frac{1}{99}-\frac{1}{101}\right)\)
\(=2\left(\frac{1}{3}-\frac{1}{101}\right)\)
\(=2\cdot\frac{98}{101}\)
\(=\frac{196}{101}\)
B=\(\frac{5^{100}+7}{5^{100}+5}\)=\(\frac{5^{100}+6+1}{5^{100}+4+1}\)
Mà \(\frac{5^{100}+6+1}{5^{100}+4+1}\)>\(\frac{5^{100}+6}{5^{100}+4}\)
\(\Rightarrow\)B>A
M*N=1/2*3/4*5/6*..*99/100*2/3*4/5*6/7*..... = 1/101 (1)
Mặt khác :
1/2 <2/3
3/4<4/5
........
99/100 < 100/101
=>1/2*3/4*5/6*....*99/100 < 2/3*4/5*6/7*....*100/101
hay M< N =>M*M<M*N hay M^2 < 1/101 <1/100
=>M^2 < 1/100 hay M^2 < (1/10)^2 =>M<1/10 (vì M>0 ) (đpcm)
a,
\(\left(25^6-15^6-10^6\right):5^6\\ =\left[\left(5\cdot5\right)^6-\left(3\cdot5\right)^6-\left(2\cdot5\right)^6\right]:5^6\\ =\left(5^6\cdot5^6-3^6\cdot5^6-2^6\cdot5^6\right):5^6\\ =5^6\left(5^6-3^6-2^6\right):5^6\\ =5^6-3^6-2^6\\ =15625-729-64\\ =14896-64\\ =14832\)
b,
\(1+2+2^2+...+2^{100}\\ =1\cdot\left(1+2+2^2+...+2^{100}\right)\\ =\left(2-1\right)\left(1+2+2^2+...+2^{100}\right)=\left(2-1\right)\cdot1+\left(2-1\right)\cdot2+\left(2-1\right)\cdot2^2+...+\left(2-1\right)\cdot2^{100}\\ =2-1+2^2-2+2^3-2^2+...+2^{101}-2^{100}\\ =2^{101}-1\)
= 0 + 0 + 0 + 100
= 0 + 100
= 100
= 0 + 0 + 0 + 100
= 0 + 100
=100