Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(1981 x 1982 - 990) : (1980 x 1982 + 992)
=(1980 x 1982+1982 -990) : (1980 x 1982 +992)
=(1980 x 1982 + 992) : ( 1980 x 1982 + 992)
=1
B=[(45.79+45.21)]:90-5^2]:5+2^3 B=[(45.79+45.21):90-25]:5+8 B=[(45.(79+21):65]:13 B=[(45.100):65]:13 B=[4500:65]:13 B=4500:65:13
\(5^{12}.7-5^{11}.10\)
\(=5^{11}.\left(5.7-10\right)\)
\(=5^{11}.25\)
\(=5^{11}.5^2\)
\(=5^{13}\)
\(2^{20}.15+2^{20}.85\)
\(=2^{20}.5\left(3+17\right)\)
\(=2^{20}.100\)
\(=104857600\)
\(125^3:25^4\)
\(=\left(5^3\right)^3:\left(5^2\right)^4\)
\(=5^9:5^8\)
\(=5\)
\(24^4:3^4-32^{12}:16^{12}\)
\(=\left(24:3\right)^4-\left(32:16\right)^{12}\)
\(=8^4-2^{12}\)
\(=0\)
1. 2x=16\(\Rightarrow\)X=4
2. 22x-1=27
\(\Rightarrow\)27=22.4-1
Vậy x =4
Bài 1: a) \(M=1+5+5^2+...+5^{100}\)
\(5M=5+5^2+5^3+...+5^{101}\)
\(5M-M=\left(5+5^2+5^3+...+5^{101}\right)-\left(1+5+5^2+...+5^{100}\right)\)
\(4M=5^{101}-1\)
\(M=\frac{5^{101}-1}{4}\)
b) \(N=2+2^2+...+2^{100}\)
\(2N=2^2+2^3+...+2^{101}\)
\(2N-N=\left(2^2+2^3+...+2^{101}\right)-\left(2+2^2+...+2^{100}\right)\)
\(N=2^{101}-2\)
Bài 2:
a) \(16^{32}=\left(2^4\right)^{32}=2^{128}\)
\(32^{16}=\left(2^5\right)^{16}=2^{80}\)
Vì \(2^{128}>2^{80}\Rightarrow16^{32}>32^{16}\)
5 . 42 - 32 : 42
5 . 16 - 32 : 16
( 5 . 16 ) - ( 32 : 16 )
= 80 : 2
= 40
5 nhân 42 -32 chia 42
=5 nhân 8 - 32 chia 8
=40-4
=36
me please