Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét phép chia a:0 = m (1)
* a khác 0
(1) ==> a=mx0 =0 (trái giả thiết)
* a = 0
(1) ==> a=mx0 hay 0=mx0
Điều này luôn đúng với mọi m cho nên m ko xác định cụ thể.
Như vậy mình đã chứng minh được điều ở trên là a:0 ko xác định.
MÌnh lớp 6 haha!
Chứng minh:4 = 5
-->Ta có
-20 = -20
<=> 25 - 45 = 16 - 36
=> 5^2 - 2.5.9/ 2 = 4^2 - 2.4.9/2
Cộg cả 2 vế với (9/2)^2 để xuất hiện hằg đẳg thức :
5^2 - 2.5.9/2 + (9/2)^2 = 4^2 - 2.4.9/2 + (9/2)^2
<=> (5 - 9/2)^2 = (4 - 9/2 )^2
=> 5 - 9/2 = 4 - 9/2
=> 5 = 4
Ta có:
-20 = -20
<=> 25 - 45 = 16 - 36
=> 5^2 - 2.5.9/ 2 = 4^2 - 2.4.9/2
Cộng cả 2 vế với (9/2)^2 để xuất hiện hằng đẳng thức :
5^2 - 2.5.9/2 + (9/2)^2 = 4^2 - 2.4.9/2 + (9/2)^2
<=> (5 - 9/2)^2 = (4 - 9/2 )^2
=> 5 - 9/2 = 4 - 9/2
=> 5 = 4
-20 = -20
16 - 36 = 25 - 45
(2 + 2)^2 - (2 + 2) 9 = 5^2 - (5 x 9)
(2 + 2)^2 - 2(2 + 2)9/2 = 5^2 - (2 x5 x 9/2) (nhân 2 và chia 2)
(2 + 2)^2 - 2(2 + 2)9/2 + (9/2)^2 = 5^2 - (2 x5 x 9/2) + (9/2)^2 (cộng thêm (9/2)^2 vào hai vế)
Hai vế của phương trình trên đều ở dạng (a^2 - 2ab + b^2)
(2 + 2 - 9/2)^2 = (5 - 9/2) ^2 (vì a^2 - 2ab + b^2 = (a - b)^2)
2 + 2 - 9/2 = 5 - 9/2
2 + 2 = 5 (điều cần chứng minh).
5 : 0 = Math Error
vì 5 ko chia được cho 0 , chỉ 0 : 5 = 0
không thể ra nổi vì số chia \(\ne\)(khác) 0 nhé bạn