Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(2x-y\right)\left(4x^2+2xy+y^2\right)+\left(2x+y\right)\left(4x^2-2xy+y^2\right)-16x\left(x^2-y\right)=32\)
\(\Leftrightarrow8x^3-y^3+8x^3+y^3-16x^3+16xy=32\)
\(\Leftrightarrow16xy=32\)
\(\Leftrightarrow xy=2\)
Do \(x;y\in Z;xy=2\) nên ta được các cặp số x ; y thỏa mãn :
\(\left(x,y\right)\in\left\{\left(1,2\right);\left(2,1\right);\left(-1,-2\right);\left(-2,-1\right)\right\}\)
a)\(x^3-x^2-x+1=\left(x^3-x\right)-\left(x^2-1\right)=x\left(x^2-1\right)-\left(x^2-1\right)=\left(x-1\right)^2.\left(x+1\right)\)
b)\(x^3+x^2-4x-4=x^2\left(x+1\right)-4\left(x+1\right)=\left(x^2-4\right)\left(x+1\right)=\left(x+2\right)\left(x-2\right)\left(x+1\right)\)
c)\(a^5+27a^2=a^2\left(a^3+27\right)=a^2\left(a+3\right)\left(a^2-3a+9\right)\)
d)\(x^4-8x=x\left(x^3-8\right)=x\left(x-2\right)\left(x^2+2x+4\right)\)
e)\(x^4-4x^3+4x^2=x^2\left(x^2-4x+4\right)=x^2\left(x-2\right)^2\)
f)\(2x^4-32=2\left(x^4-16\right)=2\left(x^2+4\right)\left(x^2-4\right)=2\left(x^2+4\right)\left(x+2\right)\left(x-2\right)\)
a) \(x^3-x^2-x+1\)
\(=x^2\left(x-1\right)-\left(x-1\right)\)
\(=\left(x^2-1\right)\left(x-1\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x-1\right)=\left(x-1\right)^2\left(x+1\right)\)
b) \(x^3+x^2-4x-4\)
\(=x^2\left(x+1\right)-4\left(x+1\right)\)
\(=\left(x^2-4\right)\left(x+1\right)\)
\(=\left(x-2\right)\left(x+2\right)\left(x+1\right)\)
c) \(a^5+27a^2=a^2\left(a^3+27\right)\)
\(=a^2\left(a+3\right)\left(a^2-3a+9\right)\)
d) \(x^4-8x=x\left(x^3-8\right)\)
\(=x\left(x-2\right)\left(x^2+2x+4\right)\)
e) \(x^4-4x^3+4x^2\)
\(=\left(x^2\right)^2-2\cdot x^2\cdot2x+\left(2x\right)^2\)
\(=\left(x^2+2x\right)^2\)\(=\left[x\left(x+2\right)\right]^2=x^2\left(x+2\right)^2\)
f) \(2x^4-32=2\left(x^4-16\right)\)
\(=2\left(x^2-4\right)\left(x^2+4\right)\)
\(=2\left(x-2\right)\left(x+2\right)\left(x^2+4\right)\)
Ta có \(\left(2x-y\right)\left(4x^2+2xy+y^2\right)+\left(2x+y\right)\left(4x^2-2xy+y^2\right)-16x\left(x^2-y\right)=32\)
<=> \(\left(2x\right)^3-y^3+\left(2x\right)^3+y^3-16x^3+16xy=32\)
<=> \(8x^3+8x^3-16x^3+16xy=32\)
<=> \(16xy=32\)
<=> \(xy=2\)
=> x, y cùng dấu (vì \(xy>0\))
Vậy có 4 cặp số nguyên (x, y) thoả mãn đẳng thức trên: (1; 2); (2; 1); (-1; -2); (-2; -1)
\(x^4+x^2+1=x^4+2x^2+1-x^2=\left(x^2+1\right)^2-x^2=\left(x^2-x+1\right)\left(x^2+x+1\right)\)
\(x^2\left(x-1\right)-4\left(x-1\right)^2=\left(x-1\right)\left(x^2-4\left(x-1\right)\right)=\left(x-1\right)\left(x-2\right)^2\)
c/ Coi lại đề
d/ \(x^{64}+2x^{32}+1-x^{32}=\left(x^{32}+1\right)^2-\left(x^{16}\right)^2=\left(x^{32}-x^{16}+1\right)\left(x^{32}+x^{16}+1\right)\)
e/ \(x^4+6x^2+9-9x^2=\left(x^2+3\right)^2-\left(3x\right)^2=\left(x^2-3x+3\right)\left(x^2+3x+3\right)\)
Lời giải:
a)
\(x^2(x+3)+y^3(y+5)-(x+y)(x^2-xy+y^2)=0\)
\(\Leftrightarrow x^3+3x^2+y^3+5y^2-(x^3+y^3)=0\)
\(\Leftrightarrow 3x^2+5y^2=0\)
Ta thấy \(3x^2\geq 0; 5y^2\geq 0, \forall x,y\in\mathbb{R}\). Do đó để tổng $3x^2+5y^2=0$ thì $x^2=y^2=0$
$\Rightarrow x=y=0$
b)
\((2x-y)(4x^2+2xy+y^2)+(2x+y)(4x^2-2xy+y^2)-16x(x^2-y)=32\)
\(\Leftrightarrow [(2x)^3-y^3]+[(2x)^3+y^3]-16x^3+16xy=32\)
\(\Leftrightarrow 16x^3-16x^3+16xy=32\)
\(\Leftrightarrow 16xy=32\Rightarrow xy=2\)
Vì $x,y$ nguyên nên $(x,y)=(1,2); (2,1); (-1,-2); (-2,-1)$
Lời giải:
a)
\(x^2(x+3)+y^3(y+5)-(x+y)(x^2-xy+y^2)=0\)
\(\Leftrightarrow x^3+3x^2+y^3+5y^2-(x^3+y^3)=0\)
\(\Leftrightarrow 3x^2+5y^2=0\)
Ta thấy \(3x^2\geq 0; 5y^2\geq 0, \forall x,y\in\mathbb{R}\). Do đó để tổng $3x^2+5y^2=0$ thì $x^2=y^2=0$
$\Rightarrow x=y=0$
b)
\((2x-y)(4x^2+2xy+y^2)+(2x+y)(4x^2-2xy+y^2)-16x(x^2-y)=32\)
\(\Leftrightarrow [(2x)^3-y^3]+[(2x)^3+y^3]-16x^3+16xy=32\)
\(\Leftrightarrow 16x^3-16x^3+16xy=32\)
\(\Leftrightarrow 16xy=32\Rightarrow xy=2\)
Vì $x,y$ nguyên nên $(x,y)=(1,2); (2,1); (-1,-2); (-2,-1)$
a) \(20m^3n^2-15m^4n^2+25m^5n^2\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ = 5m^3n^2\left(4-3m+5m^2\right)\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \)
b) \(4x^2+6x-9\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ =\left(2x-3\right)^2\)
c)\(2x^4-32\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ =2\left(x^4-2^4\right)\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ =2\left(x-2\right)\left(x^3-2^3\right)\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ =2\left(x-2\right)\left(x-2\right)\left(x^2+2x+4\right)\)
d)\(8x^3+60x^2y+150xy^2+125y^3\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ =\left(2x+5y\right)^3\)
a: \(20m^3n^2-15m^4n^2+25m^5n^2\)
\(=5m^3n^2\left(4-3m+5m^2\right)\)
c: \(2x^4-32\)
\(=2\left(x^4-16\right)\)
\(=2\left(x^2+4\right)\left(x^2-4\right)\)
\(=2\left(x^2+4\right)\left(x-2\right)\left(x+2\right)\)
\(4x^n+12.2x^n=32\)
\(4x^n+24x^n=32\)
\(28x^n=32\)
\(x^n=\frac{8}{7}\)
\(x=\sqrt[n]{\frac{8}{7}}\)