Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
/5x-4/=/x+2/
\(\orbr{\begin{cases}5x-4=x+2\\5x-4=-x+2\end{cases}}suyra\orbr{\begin{cases}x=\frac{3}{2}\\x=\frac{1}{2}\end{cases}}\)
vậy x=3/2 hoặc x=1/2
\(H=\left(3x-6\right)^2-3\left|2x-4\right|+2023\)
\(=\left(3x-6\right)^2-2\left|3x-6\right|+2023\)
\(=\left(3x-6\right)^2-2\left|3x-6\right|+1+2022\)
\(=\left(\left|3x-6\right|-1\right)^2+2022\)
Do \(\left(\left|3x-6\right|-1\right)^2\ge0;\forall x\)
\(\Rightarrow H\ge2022\)
\(\Rightarrow H_{min}=2022\) khi \(\left|3x-6\right|-1=0\Rightarrow x=\left\{\dfrac{7}{3};\dfrac{5}{3}\right\}\)
M+N=(3/2x6-7x+4x^5+2,5x^2)+(-3x^6+1/2^5-13/2x^2+4x)
M+N=3/2x6-7x+4x^5+2,5x^2+-3x^6+1/2^5-13/2x^2+4x
= (3/2x^6-3x^6)+(7x+4x)+(4x^5+1/2^5)+(2,5x^2-13/2x^2)
=-1,5x^6+11x+4,5x^5-4x^2
M-N=(3/2^6-7x+4x^5+2,5x^2)-(-3x^6+1/2^5-13/2x^2+4x)
=3/2^6-7x+4x^5+2,5x^2+3x^6-1/2^5+13/2x^2-4x
= (3/2x^6+3x^6)+(-7x-4x)+(4x^5-1/2^5)+(2,5x^2+13/2x^2)
= 4,5x^6-11x+3,5x^5+9x^2
N-M=(-3x^6+1/2^5-13/2x^2+4x)-(3/2^6-7x+4x^5+2,5x^2)
= -3x^6+1/2^5-13/2x^2+4x-3/2^6-7x-4x^5-2,5x^2
= (-3x^6-3/2x^6)+(1/2x^5-4x^5)+(-13/2x^2-2,5x^2)+(4x-7x)
= -4,5x^6-3,5x^5-9x^2-3x
*Đa thức \(B=-4x^3-2x^2-2+2x\left(3+x\right)-9x+2x^3\)
Ta có: \(B=-4x^3-2x^2-2+2x\left(3+x\right)-9x+2x^3\)
\(=-2x^3-2x^2-2+6x+2x^2-9x\)
\(=-2x^3-3x-2\)
*Đa thức \(C=x^3-2x\left(3x-1\right)+4\)
Ta có: \(C=x^3-2x\left(3x-1\right)+4\)
\(=x^3-6x^2+2x+4\)
\(3x^2-2x-8=0\\ \Leftrightarrow3x^2-2x=8\\ E=6x^2-4x+9\\ =3x^2+3x^2-2x-2x-8+17\\ =\left(3x^2-2x-8\right)+\left(3x^2-2x+17\right)\\ =3x^2-2x+17\\ =\left(3x^2-2x\right)+17=8+17=25\)
\(x+y=0\\ \Leftrightarrow y=-x\\ D=x^4-y^4+x^3y-xy^3\\ =\left(x^2+y^2\right)\left(x^2-y^2\right)+xy\left(x^2-y^2\right)\\ =\left(x^2+y^2+xy\right)\left(x^2-y^2\right)\\ =\left(x^2+\left(-x\right)^2+x.\left(-x\right)\right)\left(x^2-\left(-x\right)^2\right)\\ =\left(x^2+x^2-x^2\right)\left(x^2-x^2\right)\\ =x^2.0=0\)
a, \(4x+9\)
Để đa thức trên có nghiệm thì:
\(4x+9=0\Rightarrow x=\dfrac{-9}{4}\)
Vậy, ...
b, \(-5x+6\)
Để đa thức trên có nghiệm thì:
\(-5x+6=0\Rightarrow x=\dfrac{-6}{5}\)
Vậy, ...
c, \(x^2-1\)
Để đa thức trên có nghiệm thì:
\(x^2-1=0\Rightarrow x^2=1\Rightarrow x=\pm1\)
Vậy, ...
d, \(x^2-9\)
Để đa thức trên có nghiệm thì:
\(x^2-9=0\Rightarrow x^2=9\Rightarrow x=\pm3\)
e, \(x^2-x\)
Để đa thức trên có nghiệm thì:
\(x^2-x=0\Rightarrow x\left(x-1\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
Vậy, ...
f, \(x^2-2x\)
Để đa thức trên có nghiệm thì:
\(x^2-2x=0\Rightarrow x\left(x-2\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
Vậy, ...
g, \(x^2-3x\)
Để đa thức trên có nghiệm thì:
\(x^2-3x=0\Rightarrow x\left(x-3\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
Vậy, ...
h, \(3x^2-4x\)
Để đa thức trên có nghiệm thì:
\(3x^2-4x=0\Rightarrow x\left(3x-4\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{4}{3}\end{matrix}\right.\)
Vậy, ...
`A(x) =2x-1`
`2x-1=0`
`=> 2x=0+1`
`=>2x=1`
`=>x=1/2`
__
`B(x) =3 - 6/5x`
`3-6/5x=0`
`=> 6/5x=3-0`
`=> 6/5x=3`
`=> x= 3 : 6/5`
`=> x= 3 xx 5/6`
`=> x=15/6`
__
`C(x) = 4x^2 - 25`
`4x^2 - 25=0`
`=> 4x^2 = 0+25`
`=> 4x^2 =25`
`=> 4x^2 = (+-5)^2`
`=> x= 5/4` hoặc `x=-5/4`
__
`D(x) = ( x + 1/4 )^2 - 16/9`
` ( x + 1/4 )^2 - 16/9=0`
`=> ( x + 1/4 )^2 = 16/9`
`=>( x + 1/4 )^2 =(+-4/3)^2`
\(\Rightarrow\left[{}\begin{matrix}x+\dfrac{1}{4}=\dfrac{4}{3}\\x+\dfrac{1}{4}=-\dfrac{4}{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{5}{3}\end{matrix}\right.\)
__
`E(x) = 8x^2 + 27`
`8x^2 +27=0`
`=>8x^2=0-27`
`=> 8x^2 =-27`
`->` đề hơi sai;-;.
__
`F(x) = x^2 + 3x`
`x^2 +3x=0`
`=>x(x+3)=0`
\(\Rightarrow\left[{}\begin{matrix}x=0\\x+3=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-3\end{matrix}\right.\)
`@ yl`
\(2x=5y\Rightarrow\dfrac{x}{5}=\dfrac{y}{2}\)
Áp dụng t/c dtsbn:
\(\dfrac{x}{5}=\dfrac{y}{2}=\dfrac{3x}{15}=\dfrac{3x+y}{15+2}=\dfrac{1}{17}\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{17}.5=\dfrac{5}{17}\\y=\dfrac{1}{17}.2=\dfrac{2}{17}\end{matrix}\right.\)
\(\left|4x+8\right|+\left|3x+6\right|+\left|2x+4\right|=9\)
\(\Leftrightarrow4\left|x+2\right|+3\left|x+2\right|+2\left|x+2\right|=9\)
\(\Leftrightarrow9\left|x+2\right|=9\)
\(\Leftrightarrow\left|x+2\right|=1\)
\(\Leftrightarrow\orbr{\begin{cases}x+2=1\\x+2=-1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-3\end{cases}}\)