Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\sqrt{x^2-9}-3\sqrt{x-3}=0\\ \Leftrightarrow\sqrt{\left(x-3\right)\left(x+3\right)}-3\sqrt{x-3}=0\\ \Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}-3\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-3}=0\\\sqrt{x+3}=3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=3\\x=6\end{matrix}\right.\)
S = (3;6)
b)\(\sqrt{x^2-4}-2\sqrt{x-2}=0\\ \Leftrightarrow\sqrt{x-2}\left(\sqrt{x+2}-2\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-2}=0\\\sqrt{x+2}=2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=2\\x=2\end{matrix}\right.\) S= (2)
c)\(\sqrt{\frac{2x-3}{x-1}}=2\left(đkxđ:x\ne1\right)\Leftrightarrow2\sqrt{x-1}=\sqrt{2x-3}\\ \Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\) S= (1/2)
d) đkxđ : x khác -1
\(\sqrt{\frac{4x+3}{x+1}}=3\Leftrightarrow4x+3=9x+9\Leftrightarrow x=-\frac{6}{5}\) S = (-6/5)
e) đk x >= 3/2
\(\frac{\sqrt{2x-3}}{\sqrt{x-1}}=2\Leftrightarrow2x-3=4x-4\Leftrightarrow x=\frac{1}{2}\) (loại) vậy pt vô nghiệm
f) đk x >= -3/4
\(\frac{\sqrt{4x+3}}{\sqrt{x+1}}=3\Leftrightarrow4x+3=9x+9\Leftrightarrow x=-\frac{6}{5}\) (loại) vậy pt vô nghiệm
\(a,\frac{3x+2}{\sqrt{x+2}}=2\sqrt{x+2}\)
\(\Rightarrow3x+2=2\sqrt{x+2}.\sqrt{x+2}\)
\(\Rightarrow3x+2=2\left(x+2\right)\)
\(\Rightarrow3x+2=2x+4\)
\(\Rightarrow3x-2x=4-2\)
\(\Rightarrow x=2\)
\(b,\sqrt{4x^2-1}-2\sqrt{2x+1}=0\)
\(\Rightarrow\sqrt{\left(2x+1\right)\left(2x-1\right)}-2\sqrt{2x+1}=0\)
\(\Rightarrow\sqrt{2x+1}\left(\sqrt{2x-1}-2\right)=0\)
\(\Rightarrow\hept{\begin{cases}\sqrt{2x+1}=0\\\sqrt{2x-1}-2=0\end{cases}\Rightarrow\orbr{\begin{cases}2x+1=0\\\sqrt{2x-1}=2\end{cases}\Rightarrow}\orbr{\begin{cases}2x=-1\\2x-1=4\end{cases}\Rightarrow}\orbr{\begin{cases}x=-\frac{1}{2}\\2x=5\end{cases}\Rightarrow}\orbr{\begin{cases}x=-\frac{1}{2}\\x=\frac{5}{2}\end{cases}}}\)
\(c,\sqrt{x-2}+\sqrt{4x-8}-\frac{2}{5}\sqrt{\frac{25x-50}{4}}=4\)
\(\Rightarrow\sqrt{x-2}+\sqrt{4\left(x-2\right)}-\frac{2}{5}\sqrt{\frac{25\left(x-2\right)}{4}}=4\)
\(\Rightarrow\sqrt{x-2}+2\sqrt{x-2}-\frac{2}{5}.\frac{5\sqrt{x-2}}{2}=4\)
\(\Rightarrow\sqrt{x-2}+2\sqrt{x-2}-\sqrt{x-2}=4\)
\(\Rightarrow2\sqrt{x-2}=4\)
\(\Rightarrow\sqrt{x-2}=2\)
\(\Rightarrow x-2=4\)
\(\Rightarrow x=6\)
\(d,\sqrt{x+4}-\sqrt{1-x}=\sqrt{1-2x}\)
\(\Rightarrow\sqrt{x+4}=\sqrt{1-2x}+\sqrt{1-x}\)
\(\Rightarrow x+4=1-2x+2\sqrt{\left(1-2x\right)\left(1-x\right)}+1-x\)
\(\Rightarrow x+4=2-3x+2\sqrt{1-3x+2x^2}\)
\(\Rightarrow x+4-2+3x=2\sqrt{1-3x+2x^2}\)
\(\Rightarrow4x+2=2\sqrt{1-3x+2x^2}\)
\(\Rightarrow2x+1=\sqrt{1-3x+2x^2}\)
\(\Rightarrow4x^2+4x+1=1-3x+2x^2\)
\(\Rightarrow4x^2-2x^2+4x+3x+1-1=0\)
\(\Rightarrow2x^2+7x=0\)
\(\Rightarrow x\left(2x+7\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\2x+7=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{-7}{2}\end{cases}}}\)
\(e,\frac{2x}{\sqrt{5}-\sqrt{3}}-\frac{2x}{\sqrt{3}+1}=\sqrt{5}+1\)
\(\frac{2x\left(\sqrt{5}+\sqrt{3}\right)}{5-3}-\frac{2x\left(\sqrt{3}-1\right)}{3-1}=\sqrt{5}+1\)
\(\Rightarrow x\left(\sqrt{5}+\sqrt{3}\right)-x\left(\sqrt{3}-1\right)=\sqrt{5}+1\)
\(\Rightarrow\sqrt{5}x+\sqrt{3}x-\sqrt{3x}+x=\sqrt{5}+1\)
\(\Rightarrow\sqrt{5}x+x=\sqrt{5}+1\)
\(\Rightarrow x\left(\sqrt{5}+1\right)=\sqrt{5}+1\)
\(\Rightarrow x=1\)
1. ĐIỀU KIỆN XÁC ĐỊNH \(x\ge\frac{1}{2}.\)
Phương trình tương đương với \(\sqrt{4x^2-1}-\sqrt{2x+1}=\sqrt{2x^2-x}-\sqrt{x}\Leftrightarrow\frac{2\left(2x^2-x-1\right)}{\sqrt{4x^2-1}+\sqrt{2x+1}}=\frac{2x\left(x-1\right)}{\sqrt{2x^2-x}+\sqrt{x}}\)
Ta có \(x=1\) là nghiệm. Xét \(x\ne1:\) Phương trình tương đương với \(\frac{2\left(2x+1\right)}{\sqrt{4x^2-1}+\sqrt{x+1}}=\frac{2x}{\sqrt{2x^2-x}+\sqrt{x}}\).
Vì \(x\ge\frac{1}{2}\to\sqrt{4x^2-1}+\sqrt{x+1}\le2\sqrt{2x^2-x}+2\sqrt{x},2\left(2x+1\right)>2\times2x\to\)
\(\frac{2\left(2x+1\right)}{\sqrt{4x^2-1}+\sqrt{x+1}}>\frac{2\times2x}{2\left(\sqrt{2x^2-x}+\sqrt{x}\right)}=\frac{2x}{\sqrt{2x^2-x}+\sqrt{x}}\to\) phưong trình vô nghiệm.
Vậy phương trình đã cho có nghiệm duy nhất \(x=1\).
2. Điều kiện \(2-x^2>0,x\ne0\Leftrightarrow x\ne0,-\sqrt{2}\)\(
5) \(ĐK:x\ge-\frac{3}{2}\)
\(x^3+4x-\left(2x+7\right)\sqrt{2x+3}=0\)
\(\Leftrightarrow\frac{x^3+4x}{2x+7}=\sqrt{2x+3}\Leftrightarrow\frac{x^3+4x}{2x+7}-3=\sqrt{2x+3}-3\)
\(\Leftrightarrow\frac{\left(x-3\right)\left(x^2+3x+7\right)}{2x+7}=\frac{2\left(x-3\right)}{\sqrt{2x+3}+3}\)
\(\Leftrightarrow\left(x-3\right)\left(\frac{x^2+3x+7}{2x+7}-\frac{2}{\sqrt{2x+3}+3}\right)=0\)
(không có nghiệm thực)
Vậy phương trình có 1 nghiệm duy nhất là 3
1) \(Pt\Leftrightarrow-x^2-3x+10=3\sqrt{x^2+3x}\)( đk: \(x\le-3,x\ge0\)
Đặt \(t=\sqrt{x^2+3x},t\ge0\)
Pt trở thành: \(-t^2-3t+10=0\Leftrightarrow t=2\left(dot\ge0\right)\)
giải \(\sqrt{x^2+3x}=2\Leftrightarrow\orbr{\begin{cases}x=1\\x=-4\end{cases}}\)
3.
ĐKXĐ: \(x\ge-1;x\ne13\)
\(\left(x+2\right)\left(\sqrt{x+1}-2\right)=\sqrt[3]{2x+1}-3\)
\(\Leftrightarrow\left(x+2\right)\sqrt{x+1}-2x-4=\sqrt[3]{2x+1}-3\)
\(\Leftrightarrow\left(x+1\right)\sqrt{x+1}+x+1-\left(2x+1\right)-\sqrt[3]{2x+1}=0\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x+1}=a\\\sqrt[3]{2x+1}=b\end{matrix}\right.\)
\(\Rightarrow a^3+a-b^3-b=0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2+1\right)=0\)
\(\Leftrightarrow a=b\)
\(\Leftrightarrow\sqrt{x+1}=\sqrt[3]{2x+1}\) (\(x\ge-\frac{1}{2}\))
\(\Leftrightarrow\left(x+1\right)^3=\left(2x+1\right)^2\)
\(\Leftrightarrow x=?\)
2.
ĐKXĐ: \(x\ge-\frac{1}{2}\)
\(\Leftrightarrow8x^3+2x-\left(2x+2\right)\sqrt{2x+1}=0\)
Đặt \(\left\{{}\begin{matrix}2x=a\\\sqrt{2x+1}=b\end{matrix}\right.\)
\(\Rightarrow a^3+a-\left(b^2+1\right)b=0\)
\(\Leftrightarrow a^3-b^3+a-b=0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2+1\right)=0\)
\(\Leftrightarrow a=b\)
\(\Leftrightarrow2x=\sqrt{2x+1}\) (\(x\ge0\))
\(\Leftrightarrow4x^2=2x+1\)
\(\Leftrightarrow x=?\)
Akai Haruma, No choice teen, Arakawa Whiter, HISINOMA KINIMADO, tth, Nguyễn Việt Lâm, Phạm Hoàng Lê Nguyên, @Nguyễn Thị Ngọc Thơ
Mn giúp em vs ạ! Thanks trước!
con 6 tách trong căn thành nhân tử nhân 2 vế cho 2 rồi tách thành hđt
1. \(\sqrt{x^2-4x+3}=x-2\)
<=> x2 - 4x + 3 = (x - 2)2
<=> x2 - 4x + 3 = x2 - 4x + 4
<=> x2 - x2 - 4x + 4x = 1
<=> 0 = 1 (Vô lí)
vậy PT có nghiệm là S = \(\varnothing\)
2. \(\sqrt{4x^2-4x+1}=x-1\)
<=> \(\sqrt{\left(2x-1\right)^2}=x-1\)
<=> 2x - 1 = x - 1
<=> 2x - x = -1 + 1
<=> x = 0
\(4x^2+\frac{2x}{\sqrt{x^2+1}+x}-3=0\)
\(\Leftrightarrow4x^2+\frac{2x\left(\sqrt{x^2+1}-x\right)}{\left(\sqrt{x^2+1}+x\right)\left(\sqrt{x^2+1}-x\right)}-3=0\)
\(\Leftrightarrow4x^2+\frac{2x\sqrt{x^2+1}-2x^2}{x^2+1-x^2}-3=0\)
\(\Leftrightarrow2x^2+2x\sqrt{x^2+1}-3=0\)
\(\Leftrightarrow\left(x+\sqrt{x^2+1}\right)^2-4=0\)
\(\Leftrightarrow\left(x+\sqrt{x^2+1}-2\right)\left(x+\sqrt{x^2+1}+2\right)=0\)
Đến đây tự làm , có ý hết rồi