K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2017

\(4x^2-4x-5=4x^2-4x+1-6=\left(2x-1\right)^2-6\ge-6\)

\(Min=-6\Leftrightarrow x=\dfrac{1}{2}\)

\(4x^2+12x+10=4\left(x^2+3x+\dfrac{9}{4}\right)+1=4\left(x+\dfrac{3}{2}\right)^2+1\ge1\)

\(Min=1\Leftrightarrow x=-\dfrac{3}{2}\)

\(4x^2-12x-5=4\left(x^2-3x+\dfrac{9}{4}\right)-14=4\left(x-\dfrac{3}{2}\right)^2-14\ge-14\)

\(Min=-14\Leftrightarrow x=\dfrac{3}{2}\)

\(9x^2+12x+8=\left(9x^2+12x+4\right)+4=\left(3x+2\right)^2+4\ge4\)

\(Min=4\Leftrightarrow x=-\dfrac{2}{3}\)

b: \(\Leftrightarrow48x^2-12x-20x+5-48x^2+36x=30\)

\(\Leftrightarrow4x=25\)

hay \(x=\dfrac{25}{4}\)

1) Ta có: \(\left(x+5\right)\left(x+2\right)-3\left(4x-3\right)=\left(5-x\right)^2\)

\(\Leftrightarrow x^2+2x+5x+10-12x+9=25-10x+x^2\)

\(\Leftrightarrow x^2-5x+19-25+10x-x^2=0\)

\(\Leftrightarrow5x-6=0\)

\(\Leftrightarrow5x=6\)

\(\Leftrightarrow x=\frac{6}{5}\)

Vậy: \(x=\frac{6}{5}\)

2) Ta có: \(\left(x+2\right)^3-\left(x-2\right)^3=12x\left(x-1\right)-8\)

\(\Leftrightarrow x^3+6x^2+12x+8-\left(x^3-6x^2+12x-8\right)=12x^2-12x-8\)

\(\Leftrightarrow x^3+6x^2+12x+8-x^3+6x^2-12x+8-12x^2+12x+8=0\)

\(\Leftrightarrow12x+24=0\)

\(\Leftrightarrow12x=-24\)

\(\Leftrightarrow x=-2\)

Vậy: x=-2

3) Ta có: \(3x\left(12x-4\right)-9x\left(4x-3\right)=30\)

\(\Leftrightarrow36x^2-12x-36x^2+27x-30=0\)

\(\Leftrightarrow15x-30=0\)

\(\Leftrightarrow15x=30\)

\(\Leftrightarrow x=2\)

Vậy: x=2

4) Ta có: \(\left(12x-5\right)\left(4x-1\right)+\left(3x-7\right)\left(1-16x\right)=81\)

\(\Leftrightarrow48x^2-12x-20x+5+3x-48x^2-7+112x-81=0\)

\(\Leftrightarrow83x-83=0\)

\(\Leftrightarrow83x=83\)

\(\Leftrightarrow x=1\)

Vậy: x=1

6 tháng 8 2019

a) \(x^2-12x+11\)\(=0\)

\(\Leftrightarrow\left(x-6\right)^2-25=0\)

\(\Leftrightarrow\left(x-6+5\right)\left(x-6-5\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-11\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-11=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=11\end{matrix}\right.\)

6 tháng 8 2019

a)\(x^2-12x+11=0\)

\(x^2-x-11x+11=0\)

\(\left(x^2-x\right)-\left(11x-11\right)=0\)

\(x\left(x-1\right)-11\left(x-1\right)=0\)

\(\left(x-1\right)\left(x-11\right)=0\)

\(=>\left[{}\begin{matrix}x-1=0\\x-11=0\end{matrix}\right.\)

\(=>\left[{}\begin{matrix}x=1\\x=11\end{matrix}\right.\)

b)\(4x^2-4x-3=0\)

\(4x^2-2x+6x-3=0\)

\(2x\left(2x-1\right)+3\left(3x-1\right)=0\)

\(\left(2x-1\right)\left(2x+3\right)=0\)

\(=>\left[{}\begin{matrix}2x-1=0\\2x+3=0\end{matrix}\right.\)

\(=>\left[{}\begin{matrix}x=0,5\\x=-1,5\end{matrix}\right.\)\

c)\(4x^2-12x-7=0\)

\(4x^2-14x+2x-7=0\)

\(2x\left(2x-7\right)+\left(2x-7\right)=0\)

\(\left(2x-7\right)\left(2x+1\right)=0\)

\(=>\left[{}\begin{matrix}2x-7=0\\2x+1=0\end{matrix}\right.\)

\(=>\left[{}\begin{matrix}x=3,5\\x=-0,5\end{matrix}\right.\)

1 tháng 2 2017

=\(4x^2-10x-2x+5=\left(4x^2-2x\right)-\left(10x+5\right)\)

=\(2x.\left(2x-1\right)-5.\left(2x-1\right)=\left(2x-5\right).\left(2x-1\right)\)

27 tháng 7 2023

chuyển vế sang r phân tích thành nhân tử, có thể dùng máy tính bỏ túi nhé bạn

 

27 tháng 7 2023

câu 1: 9\(x^2\) + 12\(x\) + 5  =11

           (3\(x\))2 + 2.3.\(x\) .2 + 22 + 1 = 11

           (3\(x\) + 2)2      =  11 - 1

             (3\(x\) + 2)2    = 10

               \(\left[{}\begin{matrix}3x+2=\sqrt{10}\\3x+2=-\sqrt{10}\end{matrix}\right.\)

                \(\left[{}\begin{matrix}3x=\sqrt{10}-2\\3x=-\sqrt{10}-2\end{matrix}\right.\)

                  \(\left[{}\begin{matrix}x=\dfrac{\sqrt{10}-2}{3}\\x=\dfrac{-\sqrt{10}-2}{3}\end{matrix}\right.\)

                 Vậy S = {\(\dfrac{-\sqrt{10}-2}{3}\); \(\dfrac{\sqrt{10}-2}{3}\)

  Câu 2: 6\(x^2\) + 16\(x\) + 12 = 2\(x^2\)

              6\(x^2\) + 16\(x\) + 12 - 2\(x^2\) = 0

              4\(x^2\) + 16\(x\) + 12 = 0

              (2\(x\))2 + 2.2.\(x\).4 + 16 - 4 = 0

               (2\(x\) + 4)2   = 4

               \(\left[{}\begin{matrix}2x+4=2\\2x+4=-2\end{matrix}\right.\) 

                \(\left[{}\begin{matrix}2x=-2\\2x=-6\end{matrix}\right.\)

                 \(\left[{}\begin{matrix}x=-1\\x=-3\end{matrix}\right.\)

              S = { -3; -1}

3, 16\(x^2\) + 22\(x\) + 11 = 6\(x\) + 5

    16\(x^2\) + 22\(x\) - 6\(x\)  + 11 - 5 = 0

     16\(x^2\) + 16\(x\) + 6 = 0

      (4\(x\))2 + 2.4.\(x\) . 2 + 22 + 2 = 0

       (4\(x\) + 2)2 + 2 = 0 (1) 

Vì (4\(x\)+ 2)2 ≥ 0 ∀ ⇒ (4\(x\) + 2)2 + 2 > 0 ∀ \(x\) vậy (1) Vô nghiệm

             S = \(\varnothing\)

Câu 4. 12\(x^2\) + 20\(x\) + 10 = 3\(x^2\) - 4\(x\) 

            12\(x^2\) + 20\(x\) + 10 - 3\(x^2\) + 4\(x\) = 0

            9\(x^2\) + 24\(x\) + 10 = 0

           (3\(x\))2 + 2.3.\(x\).4 + 16 - 6 = 0

          (3\(x\) + 4)2 = 6

            \(\left[{}\begin{matrix}3x+4=\sqrt{6}\\3x+4=-\sqrt{6}\end{matrix}\right.\)

              \(\left[{}\begin{matrix}3x=-4+\sqrt{6}\\3x=-4-\sqrt{6}\end{matrix}\right.\)

              \(\left[{}\begin{matrix}x=\dfrac{\sqrt{6}-4}{3}\\x=-\dfrac{\sqrt{6}+4}{3}\end{matrix}\right.\)

                    S = {\(\dfrac{-\sqrt{6}-4}{3}\)\(\dfrac{\sqrt{6}-4}{3}\)}