![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
1) Ta có: \(\left(x+5\right)\left(x+2\right)-3\left(4x-3\right)=\left(5-x\right)^2\)
\(\Leftrightarrow x^2+2x+5x+10-12x+9=25-10x+x^2\)
\(\Leftrightarrow x^2-5x+19-25+10x-x^2=0\)
\(\Leftrightarrow5x-6=0\)
\(\Leftrightarrow5x=6\)
\(\Leftrightarrow x=\frac{6}{5}\)
Vậy: \(x=\frac{6}{5}\)
2) Ta có: \(\left(x+2\right)^3-\left(x-2\right)^3=12x\left(x-1\right)-8\)
\(\Leftrightarrow x^3+6x^2+12x+8-\left(x^3-6x^2+12x-8\right)=12x^2-12x-8\)
\(\Leftrightarrow x^3+6x^2+12x+8-x^3+6x^2-12x+8-12x^2+12x+8=0\)
\(\Leftrightarrow12x+24=0\)
\(\Leftrightarrow12x=-24\)
\(\Leftrightarrow x=-2\)
Vậy: x=-2
3) Ta có: \(3x\left(12x-4\right)-9x\left(4x-3\right)=30\)
\(\Leftrightarrow36x^2-12x-36x^2+27x-30=0\)
\(\Leftrightarrow15x-30=0\)
\(\Leftrightarrow15x=30\)
\(\Leftrightarrow x=2\)
Vậy: x=2
4) Ta có: \(\left(12x-5\right)\left(4x-1\right)+\left(3x-7\right)\left(1-16x\right)=81\)
\(\Leftrightarrow48x^2-12x-20x+5+3x-48x^2-7+112x-81=0\)
\(\Leftrightarrow83x-83=0\)
\(\Leftrightarrow83x=83\)
\(\Leftrightarrow x=1\)
Vậy: x=1
![](https://rs.olm.vn/images/avt/0.png?1311)
\(4x^2-4x-5=4x^2-4x+1-6=\left(2x-1\right)^2-6\ge-6\)
\(Min=-6\Leftrightarrow x=\dfrac{1}{2}\)
\(4x^2+12x+10=4\left(x^2+3x+\dfrac{9}{4}\right)+1=4\left(x+\dfrac{3}{2}\right)^2+1\ge1\)
\(Min=1\Leftrightarrow x=-\dfrac{3}{2}\)
\(4x^2-12x-5=4\left(x^2-3x+\dfrac{9}{4}\right)-14=4\left(x-\dfrac{3}{2}\right)^2-14\ge-14\)
\(Min=-14\Leftrightarrow x=\dfrac{3}{2}\)
\(9x^2+12x+8=\left(9x^2+12x+4\right)+4=\left(3x+2\right)^2+4\ge4\)
\(Min=4\Leftrightarrow x=-\dfrac{2}{3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=9x^2-30x+7=\left(3x\right)^2-2.3x.5+25-25+7\)
\(A=\left(3x+5\right)^2\ge-18\forall x\in R\)
GTNN của A =-18 khi \(3x+5=0\Leftrightarrow x=-\frac{5}{3}\)
\(B=3x^2-12x+5=3\left(x^2-4x\right)+5\)
\(=3\left(x^2-4x+4\right)-3.4+5\)
\(=3\left(x-2\right)^2-7\ge-7\forall x\in R\)
GTNN của B = -7 khi \(x-2=0\Leftrightarrow x=2\)
\(C=4x^2+12x=\left(2x\right)^2+2.2x.3+3^2-9\)
\(=\left(2x+3\right)^2-9\ge-9\forall x\in R\)
GTNN của C = -9 khi \(2x+3=0\Leftrightarrow x=-\frac{3}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
4x2 - 12x -7 = 0
<=> 4x2 -14x +2x -7 = 0
<=> 2x(2x-7) + (2x-7) = 0
<=> (2x-7)(2x+1) = 0
<=> 2x-7 = 0 hoặc 2x+1 = 0
<=> 2x = 7 hoặc 2x = -1
<=> x= \(\frac{7}{2}\)hoặc x= \(\frac{-1}{2}\)
Vậy tập nghiệm của phương trình là S={\(\frac{7}{2}\);\(\frac{-1}{2}\)}
1) Viết biểu thức sau dưới dạng hiệu 2 bình phương:
a)4x2+6x+7-y2-6y
b)x2+y2-4x-6y+13
c)4x2-12x-y2+2y+8
![](https://rs.olm.vn/images/avt/0.png?1311)
b) \(x^2+y^2-4x-6y+13\)
\(=\left(x^2-4x+4\right)+\left(y^2-6y+9\right)\)
\(=\left(x-2\right)^2+\left(y-3\right)^2\)
c) \(4x^2-12x-y^2+2y+8\)
\(=\left(4x^2-12x+9\right)-\left(y^2-2y+1\right)\)
\(=\left(2x-3\right)^2-\left(y-1\right)^2\)
\(x^2+y^2-4x-6y+13\)
\(=\left(x^2-4x+4\right)+\left(y^2-6y+9\right)\)
\(=\left(x-2\right)^2+\left(y-3\right)^2\)
hk
![](https://rs.olm.vn/images/avt/0.png?1311)
1) \(x^2+8x+7=0\)
\(\Leftrightarrow x^2+7x+x+7=0\)
\(\Leftrightarrow x\left(x+7\right)+\left(x+7\right)=0\)
\(\Leftrightarrow\left(x+7\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-7\\x=-1\end{matrix}\right.\)
Vậy...
2) \(4x^2+12x+6=0\)
\(\Leftrightarrow4\left(x^2+3x+\frac{3}{2}\right)=0\)
\(\Leftrightarrow x^2+2\cdot x\cdot\frac{3}{2}+\frac{9}{4}-\frac{3}{4}=0\)
\(\Leftrightarrow\left(x+\frac{3}{2}\right)^2=\frac{3}{4}=\left(\frac{\pm\sqrt{3}}{2}\right)^2\)
\(\Leftrightarrow x=\frac{\pm\sqrt{3}-3}{2}\)
Vậy...
![](https://rs.olm.vn/images/avt/0.png?1311)
Làm 2 câu các câu còn lại tương tự!
a, \(E=-x^2+4x-5=-\left(x^2-4x+5\right)\)
\(=-\left(x^2-2x-2x+4+1\right)=-\left[\left(x-2\right)^2+1\right]\)
Với mọi giá trị của \(x\in R\) ta có:
\(\left(x-2\right)^2+1\ge1\Rightarrow-\left[\left(x-2\right)^2+1\right]\le-1\)
Hay \(E\le-1\) với mọi giá trị của \(x\in R\).
Để \(E=-1\) thì \(-\left[\left(x-2\right)^2+1\right]=-1\)
\(\Rightarrow\left(x-2\right)^2=0\Rightarrow x=2\)
Vậy.............
b, \(F=-2x^2+2x-1=-\left(2x^2-2x+1\right)\)
\(=-\left(2x^2-x-x+\dfrac{1}{2}-\dfrac{3}{2}\right)\)
\(=-\left[\left(2x-1\right)^2-\dfrac{3}{2}\right]\)
Với mọi giá trị của \(x\in R\) ta có:
\(\left(2x-1\right)^2-\dfrac{3}{2}\ge-\dfrac{3}{2}\Rightarrow-\left[\left(2x-1\right)^2-\dfrac{3}{2}\right]\le\dfrac{3}{2}\)
Hay \(F\le\dfrac{3}{2}\) với mọi giá trị của \(x\in R\).
Để \(F=\dfrac{3}{2}\) thì \(-\left[\left(2x-1\right)^2-\dfrac{3}{2}\right]=\dfrac{3}{2}\)
\(\Rightarrow\left(2x-1\right)^2=0\Rightarrow x=\dfrac{1}{2}\)
Vậy.............
7, \(G=-4x^2+12x-7\)
\(=-4\left(x^2-3x+\dfrac{7}{4}\right)\)
\(=-4\left(x^2-\dfrac{3}{2}.x.2+\dfrac{9}{4}-\dfrac{2}{4}\right)\)
\(=-4\left(x-\dfrac{3}{2}\right)^2+2\le2\)
Dấu " = " khi \(-4\left(x-\dfrac{3}{2}\right)^2=0\Leftrightarrow x=\dfrac{3}{2}\)
Vậy \(MAX_G=2\) khi \(x=\dfrac{3}{2}\)
8, \(H=-2x^2+4x-15\)
\(=-2\left(x^2-2x+\dfrac{15}{2}\right)\)
\(=-2\left(x^2-2x+1+\dfrac{13}{2}\right)\)
\(=-2\left(x-1\right)^2-13\le-13\)
Dấu " = " khi \(-2\left(x-1\right)^2=0\Leftrightarrow x=1\)
Vậy \(MAX_H=-13\) khi x = 1
9, \(K=-x^4+2x^2-2\)
\(=-\left(x^2-2x^2+1+1\right)\)
\(=-\left(x^2-1\right)^2-1\le-1\)
Dấu " = " khi \(-\left(x^2-1\right)^2=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
Vậy \(MAX_K=-1\) khi \(x=\pm1\)
10, \(J=-3x^2+15x-9\)
\(=-3\left(x^2-\dfrac{5}{2}.x.2+\dfrac{10}{4}+\dfrac{2}{4}\right)\)
\(=-3\left(x-\dfrac{5}{2}\right)^2-\dfrac{3}{2}\le\dfrac{-3}{2}\)
Dấu " = " khi \(-3\left(x-\dfrac{5}{2}\right)^2=0\Leftrightarrow x=\dfrac{5}{2}\)
Vậy \(MAX_J=\dfrac{-3}{2}\) khi \(x=\dfrac{5}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a)Ta có : 9(a + b)2 - 4(a - 2b)2
= [3(a + b) - 2(a - 2b)].[3(a + b) + 2(a - 2b)]
= (3a + 3b - 2a + 4b)(3a + 3b + 2a - 4b)
= (a + 7b)(5a - b)
\(4x^2-12x-7\)
\(=\left(2x\right)^2-2\cdot2x\cdot3+3^2-16\)
\(=\left(2x-3\right)^2-4^2\)
\(=\left(2x-3+4\right)\left(2x-3-4\right)\)
\(=\left(2x+1\right)\left(2x-7\right)\)