Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2: 12-10x=25-30x
=>20x=13
=>x=13/20
3: \(3\left(2x+3\right)-2\left(4x-5\right)=10x+21\)
=>6x+9-8x+10=10x+21
=>10x+21=-2x+19
=>12x=-2
=>x=-1/6
4: \(\Leftrightarrow25x-15-6x+12=11-5x\)
=>19x-3=11-5x
=>24x=14
=>x=7/12
5: \(\Leftrightarrow8-12x-5+10x=4-6x\)
=>4-6x=-2x+3
=>-4x=-1
=>x=1/4
6: \(\Leftrightarrow32x-24-6+9x=13-40x\)
=>41x-30=13-40x
=>81x=43
=>x=43/81
7: \(\Leftrightarrow10x-5+20x=5x-11\)
=>30x-5=5x-11
=>25x=-6
=>x=-6/25
1)8(4x-3)-3(2-3x)=13-40x
(32x-24)-(6-9x)=13-40x
32x-24-6+9x=13-40x
41x-30=13-40x
41x+40x=13+30
81x=43
x=43/81
Vậy x=43/81
2)10x-5(1-4x)=5x-11
10x-(5-20x)=5x-11
10x-5+20x=5x-11
30x-5=5x-11
30x-5x=5-11
25x=-6
x=-6/25
Vậy x=-6/25
`(x - 2)/3 = (x + 1)/4`
`(x - 2) . 4 = (x + 1) . 3`
`<=> 4x - 8 = 3x + 3`
`<=> 4x - 3x = 3 + 8`
`<=> (4 - 3)x = 11`
`=> x = 11`
`=>` `x = 11`
\(\Rightarrow\frac{3}{4}x-\frac{1}{4}=2x-6+\frac{1}{4}x\)
\(\Rightarrow\frac{3}{4}x-2x-\frac{1}{4}x=-6+\frac{1}{4}\)
\(\Rightarrow-\frac{3}{2}x=-\frac{23}{4}\)
\(\Rightarrow x=\frac{23}{4}:\frac{3}{2}=\frac{23}{6}\)
\(\Rightarrow\frac{8}{9}x-\frac{1}{3}x=\frac{2}{3}+\frac{11}{3}\)
\(\Rightarrow\frac{5}{9}x=\frac{13}{3}\)
\(\Rightarrow x=\frac{13}{3}:\frac{5}{9}=\frac{39}{5}\)
\(\Rightarrow\frac{3}{4}x-\frac{1}{4}=2x-6+\frac{1}{4}x\)
\(\Rightarrow\frac{3}{4}x-2x-\frac{1}{4}x=-6+\frac{1}{4}\)
\(\Rightarrow-\frac{3}{2}x=-\frac{23}{4}\)
\(\Rightarrow x=\frac{23}{4}:\frac{3}{2}=\frac{23}{6}\)
\(\Rightarrow\frac{8}{9}x-\frac{1}{3}x=\frac{2}{3}+\frac{11}{3}\)
\(\Rightarrow\frac{5}{9}x=\frac{13}{3}\)
\(\Rightarrow x=\frac{13}{3}:\frac{5}{9}=\frac{39}{5}\)
3(2x+3)(3x-5)<0
\(\Rightarrow\left(3x+3\right)\left(3x-5\right)< 0\)
Mà \(3x+3>3x-5\)
\(\Rightarrow\hept{\begin{cases}3x+3>0\\3x-5< 0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}3x>-3\\3x< 5\end{cases}}\)
\(\Rightarrow-1< x< \frac{5}{3}\)
\(2x^2-4x=2x\left(x-2\right)>0\)
\(\Rightarrow x\left(x-2\right)>0\)
\(\Rightarrow\orbr{\begin{cases}x< 0;x-2< 0\\x>0;x-2>0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x< 0\\x>2\end{cases}}\)
\(\left(4x-1\right)^{\Lambda}3=\left(3x\right)^{\Lambda}3\)