K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2017

4)

a,

\(34^2+66^2+68\cdot66\\ =34^2+68\cdot66+66^2\\=34^2+2\cdot34\cdot68+66^2\\ =\left(34+66\right)^2\\ =100^2 =10000\)

b,

\(74^2+24^2-48\cdot74\\ =74^2-48\cdot74+24^2\\ =74^2-2\cdot24\cdot74+24^2\\ =\left(74-24\right)^2\\ =50^2=2500\)

c,

\(729^2-728^2\\ =\left(729+728\right)\left(729-728\right)\\ =1457\cdot1\\ =1457\)

d,

\(1001^2-1\\ =1001^2-1^2\\ =\left(1001+1\right)\left(1001-1\right)\\ =1002\cdot1000\\ =1002000\)

5)

a,

\(\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\\ =1\cdot\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\\ =\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\\ =\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\\ =\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\\ =\left(2^8-1\right)\left(2^8+1\right)\\ =2^{16}-1\)

b,

\(7\cdot\left(2^3+1\right)\left(2^6+1\right)\left(2^{12}+1\right)\left(2^{24}+1\right)\\ =\left(2^3-1\right)\left(2^3+1\right)\left(2^6+1\right)\left(2^{12}+1\right)\left(2^{24}+1\right)\\ =\left(2^6-1\right)\left(2^6+1\right)\left(2^{12}+1\right)\left(2^{24}+1\right)\\ =\left(2^{12}-1\right)\left(2^{12}+1\right)\left(2^{24}+1\right)\\ =\left(2^{24}-1\right)\left(2^{24}+1\right)\\ =2^{48}-1\)

16 tháng 7 2017

còn cau C

16 tháng 7 2017

a) \(=34^2+66^2+2.34.66=\left(34+66\right)^2=100^2=10000\)

b) \(=74^2+24^2-2.24.74=\left(74-24\right)^2=2500\)

c) \(=\left(729-728\right)\left(729+728\right)=1.1457=1457\)

d) \(=\left(1001-1\right)\left(1001+1\right)=1000.1002=1002000\)

Chúc bạn học tốt.

17 tháng 7 2017

rút gn

a) (2-1)(2^2-1)(2^4+1)(2^8+1)

28 tháng 8 2016

a. 34^2 + 66^2 + 68 x 66

= 34 x 34 + 66 x 66 + 68 x 66

= 34 x 34 + 66 x (66 + 68)

= 34 x 34 + 66 x 134

= 34 x 34 + 66 x 34 + 66 x 100

= 34 x (34 + 66) + 66 x 100

= 34 x 100 + 66 x 100

= (34 + 66) x 100

= 100 x 100

= 10000

\(34^2+66^2+68.66\)

\(=34.34+66.66+68.66\)

\(=34.34+66.\left(68+66\right)\)

\(=34.34+66.134\)

\(=34.34+66.\left(100+34\right)\)

\(=34.34+66.100+66.34\)

\(=34.\left(66+34\right)+66.100\)

\(=34.100+66.100\)

\(=\left(34+66\right).100\)

\(=100^2\)

\(=10000\)

4 tháng 7 2018

Mình làm câu c trước để bạn hình dung ra nhé, câu a tương tự:

c) \(7\left(2^3+1\right)\left(2^6+1\right)\left(2^{12}+1\right)\left(2^{24}+1\right)\)

\(=\left(8-1\right)\left(2^3+1\right)\left(2^6+1\right)\left(2^{12}+1\right)\left(2^{24}+1\right)\)

\(=\left[\left(2^3-1\right)\left(2^3+1\right)\right]\left(2^6+1\right)\left(2^{12}+1\right)\left(2^{24}+1\right)\)

\(=\left(2^6-1\right)\left(2^6+1\right)\left(2^{12}+1\right)\left(2^{24}+1\right)\)

\(=\left(2^{12}-1\right)\left(2^{12}+1\right)\left(2^{24}+1\right)\)

\(=\left(2^{12}-1\right)\left(2^{24}+1\right)\)

\(=2^{36}-1\)

b) \(\left(x^2-x+4\right)\left(x^2+x+1\right)\left(x^2-1\right)\)

\(=\left(x^2.x^2.x^2\right).\left(-x+4+x+1+\left(-1\right)\right)\)

\(=x^8.\left(-4\right)\)

4 tháng 7 2018

\(a,\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

\(=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\)

\(=\left(2^8-1\right)\left(2^8+1\right)\)

\(=2^{16}-1\)

6 tháng 1 2018

( 34^2+66^2+68.66

= 34^2 + 66^2 + 2. 34.66

= ( 34+66)^2

= 100^2 = 10 000

b) 74^2 + 24^2 - 48.74

= 74^2 + 24^2 - 2. 74 . 24

= (74-24)^2 = 50^2 = 2500 

6 tháng 1 2018

a) 34^2 + 66^2 + 68 . 66 = 5580,66

b) 74^2 + 24^2 – 48 . 74 = 6003.26 

20 tháng 7 2017

a) 342+662+68.66=342+662+2.34.66

=(34+66)2=1002=10000

b)742+242-48.74=742+242-2.24.74

=(74-24)2=502=2500

16 tháng 5 2019

6 tháng 10 2019

\(x^8+x^7+1\)

\(=x^8+x^7+x^6-x^6+x^5-x^5+x^4-x^4+x^3-x^3+x^2-x^2+x-xx+1\)

\(=\left(x^8-x^6+x^5-x^3+x^2\right)\)

\(+\left(x^7-x^5+x^4-x^2+x\right)\)

\(+\left(x^6-x^4+x^3-x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^6-x^4+x^3-x+1\right)\)

6 tháng 10 2019

\(x^5+x+1\)

\(=x^5-x^2+x^2+x+1\)

\(=x^2\left(x^3-1\right)+\left(x^2+x+1\right)\)

\(=x^2\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^3-x^2+1\right)\)