Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2) Ta có : 2n - 2 = 2(n - 1) chia hết cho n - 1
Nên với mọi giá trị của n thì 2n - 2 đều chia hết cho n - 1
3) Ta có : 5n - 1 chia hết chi n - 2
=> 5n - 10 + 9 chia hết chi n - 2
=> 5(n - 2) + 9 chia hết chi n - 2
=> n - 2 thuộc Ư(9) = {1;3;9}
Ta có bảng :
n - 2 | 1 | 3 | 9 |
n | 3 | 5 | 11 |
1) Ta có : 2n + 3 chia hết cho 3n + 1
<=> 6n + 9 chia hết cho 3n + 1
<=> 6n + 2 + 7 chia hết cho 3n + 1
=> 7 chia hết cho 3n + 1
=> 3n + 1 thuộc Ư(7) = {1;7}
Ta có bảng :
3n + 1 | 1 | 7 |
3n | 0 | 6 |
n | 0 | 2 |
Vậy n thuộc {0;2}
a, 5n chia hết cho n - 2
=> 5n - 10 + 10 chia hết cho n - 2
=> 5 ( n - 2 ) + 10 chia hết cho n - 2
=> 10 chia hết cho n - 2
=> n - 2 \(\in\)Ư ( 10 ) = { -10 ; - 5 ; -2 ; -1 ; 1 ; 2 ; 5 ; 10 }
=> = { - 8 ; - 3 ; 0 ; 1 ; 3 ; 4 ; 7 ; 12 }
Do n \(\in\)N => n = { 0 ; 1 ; 3 ; 4 ; 7 ; 12 }
b) 4n + 5 chia hết cho 2n + 1
=> 4n + 2 + 3 chia hết cho 2n + 1
=> 2( 2n + 1 ) + 3 chia hết cho 2n + 1
=> 3 chia hết cho 2n + 1
=> 2n + 1 \(\in\)Ư ( 3 ) = { - 3 ; - 1 ; 1 ; 3 }
=> n = { -2 ; -1 ; 0 ; 1 }
Do n \(\in\)N => n = { 0 ; 1 }
c) 3n + 2 chia hết cho 2n - 1
=> 2( 3n + 2 ) chia hết cho 2n - 1
=> 6n + 4 chia hết cho 2n - 1
=> 6n - 3 + 7 chia hết cho 2n - 1
=> 3 ( 2n - 1 ) + 7 chia hết cho 2n - 1
=> 7 chia hết cho 2n - 1
=> 2n - 1 \(\in\)Ư ( 7 ) = { - 7 ; - 1 ; 1 ; 7 }
=> n = { -3 ; 0 ; 1 ; 4 }
Do n \(\in\)N => n = { 0 ; 1 ; 4 }
a) 5n chia hết cho n-2
=> 5n-10+10 chia hết cho n-2
=> 5(n-2)+10 chia hết cho n-2
=> 5(n-2) chia hết cho n-2 ; 10 chia hết cho n-2
=> n-2 thuộc Ư(10)={1,2,5,10}
=> n thuộc {3,4,7,12}
b) 4n+5 chia hết cho 2n+1
=> 4n+2+3 chia hết cho 2n+1
=> 2(2n+1)+3 chia hết cho 2n+1
=> 2(2n+1)+3 chia hết cho 2n+1 ; 3 chia hết cho 2n+1
=> 2n+1 thuộc Ư(3)={1,3}
=> n thuộc {0,1}
a: \(\Leftrightarrow2n+2+1⋮n+1\)
\(\Leftrightarrow n+1\in\left\{1;-1\right\}\)
hay \(n\in\left\{0;-2\right\}\)
b: \(\Leftrightarrow3n-3+8⋮n-1\)
\(\Leftrightarrow n-1\in\left\{1;-1;2;-2;4;-4;8;-8\right\}\)
hay \(n\in\left\{2;0;3;-1;5;-3;9;-7\right\}\)
c: \(\Leftrightarrow4n+6+4⋮2n+3\)
\(\Leftrightarrow2n+3\in\left\{1;-1\right\}\)
hay \(n\in\left\{-1;-2\right\}\)
d: \(\Leftrightarrow15n+18⋮3n+1\)
\(\Leftrightarrow15n+5+13⋮3n+1\)
\(\Leftrightarrow3n+1\in\left\{1;-1;13;-13\right\}\)
hay \(n\in\left\{0;4\right\}\)
a) (2n+8).(5n-5)=2(n+4).5(n-1)=10(n+4)(n-1) chia hết cho 10
b) Ta có 2n+1 và 4n+5 đều là số lẻ nên (2n+1)(4n+5) là số lẻ
=> (2n+1)(4n+5) không chia hết cho 2
\(\left(n-5\right)⋮\left(n-2\right)\)
=> \(\left(n-5\right)-\left(n-2\right)⋮\left(n-2\right)\)
=> \(\left(n-5-n+2\right)⋮\left(n-2\right)\)
=> \(-3⋮\left(n-2\right)\)
=> n-2\(\inƯ\left(-3\right)\) ={\(\pm1,\pm3\) }
ta có bảng sau
n-2 | -1 | 1 | -3 |
3 |
n | 1 | 3 | -1 | 5 |
tm | tm | loại | tm |
vậy n\(\in\left\{1;3;5\right\}\)