Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{5}{2.5}+\frac{5}{5.8}+\frac{5}{8.11}+...+\frac{5}{47.50}\)
\(=\frac{5}{3}\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{47.50}\right)\)
\(=\frac{5}{3}\left(\frac{5-2}{2.5}+\frac{8-5}{5.8}+\frac{11-8}{8.11}+...+\frac{50-47}{47.50}\right)\)
\(=\frac{5}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{47}-\frac{1}{50}\right)\)
\(=\frac{5}{3}\left(\frac{1}{2}-\frac{1}{50}\right)\)
\(=\frac{4}{5}\)
A = \(\dfrac{4}{2.5}\) + \(\dfrac{4}{5.8}\)+...+ \(\dfrac{4}{47.50}\)
A = \(\dfrac{4}{3}\).( \(\dfrac{3}{2.5}+\dfrac{3}{5.8}+...+\dfrac{3}{47.50}\))
A = \(\dfrac{4}{3}\).(\(\dfrac{1}{2}\) - \(\dfrac{1}{5}\) + \(\dfrac{1}{5}\) - \(\dfrac{1}{8}\)+...+ \(\dfrac{1}{47}\) - \(\dfrac{1}{50}\))
A = \(\dfrac{4}{3}\).( \(\dfrac{1}{2}\) - \(\dfrac{1}{50}\))
A = \(\dfrac{4}{3}\). \(\dfrac{24}{50}\)
A = \(\dfrac{16}{25}\)
Ta có: 3S = 3/2.5 + 3/5.8 + ... + 3/47.50
3S = 1/2 - 1/5 + 1/5 - 1/8 + ... +1/47 - 1/50
3S = 1/2 - 1/50
3S = 12/25
=> S = 12/25 : 3 = 4/25
k, đây là dạng toán sai phân hữu hạn.
-----------
số hạng tổng quát là 1/[n.(n+3)] = (1/3).[(n+3)-n]/[n.(n+3)] = (1/3). [1/n - 1/(n+3)]
=>
A = (1/3).[(1/2 - 1/5) + (1/5 - 1/8) + (1/8 - 1/11) +...+(1/44 - 1/47) + (1/47 - 1/50)]
= (1/3).[1/2 - 1/50]
= (1/3). (24/50) = (1/3).(12/25) = 4/25
vậy A = 4/25
---------
good luck!
a) \(\frac{6}{2.5}+\frac{6}{5.8}+\frac{6}{8.11}+.......+\frac{6}{44.47}+\frac{6}{47.50}\)
\(=2\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+......+\frac{3}{44.47}+\frac{3}{47.50}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+......+\frac{1}{44}-\frac{1}{47}+\frac{1}{47}-\frac{1}{50}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{50}\right)\)
\(=1-\frac{1}{25}\)
\(=\frac{24}{25}\)
đặt \(A=\frac{1}{9.11}+\frac{1}{11.13}+........+\frac{1}{41.43}+\frac{1}{43.45}\)
\(2A=\frac{2}{9.11}+\frac{2}{11.13}+.......+\frac{2}{41.43}+\frac{2}{43.45}\)
\(2A=\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}+......+\frac{1}{41}-\frac{1}{43}+\frac{1}{43}-\frac{1}{45}\)
\(2A=\frac{1}{9}-\frac{1}{45}\)
\(2A=\frac{4}{45}\)
\(A=\frac{4}{45}\div2\)
\(A=\frac{2}{45}\)
\(=\dfrac{4}{3}\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+...+\dfrac{1}{302}-\dfrac{1}{305}\right)=\dfrac{4}{3}\cdot\dfrac{303}{610}=\dfrac{202}{305}\)
\(\dfrac{4}{2.5}+\dfrac{4}{5.8}+\dfrac{4}{8.11}+...+\dfrac{4}{302.305}\)
\(=4\left(\dfrac{1}{2.5}+\dfrac{1}{5.8}+\dfrac{1}{8.11}+...+\dfrac{1}{302.305}\right)\)
\(=\dfrac{4}{3}\left(\dfrac{3}{2.5}+\dfrac{3}{5.8}+\dfrac{3}{8.11}+...+\dfrac{3}{302.305}\right)\)
\(=\dfrac{4}{3}\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+...+\dfrac{1}{302}-\dfrac{1}{305}\right)\)
\(=\dfrac{4}{3}\left(\dfrac{1}{2}-\dfrac{1}{305}\right)\)
\(=\dfrac{4}{3}.\dfrac{303}{610}\\ =\dfrac{202}{305}\)
\(=\frac{3}{4}\cdot\left(\frac{4}{2.5}+\frac{4}{5.8}+...+\frac{4}{62.65}\right)\)
\(=\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{62.65}\)
\(=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{62}-\frac{1}{65}\)
\(=\frac{1}{2}-\frac{1}{65}\)
\(=\frac{63}{130}\)
Đặt A=4/2.5+4/5.8+4/8.11+...+4/62.65.Ta có A=4.(1/2.5+1/5.8+1/8.11+...1/62.65)=4/3.(3/2.5+3/5.8+3/8.11+...+3/62.65) =4/3.(1/2-1/5+1/5-1/8+1/8-1/11+...+3/62-3/65)=4/3.(1/2-1/65)=4/3.63/130=42/56 Vậy A=42/56
Ta có : B = 4 / 2. 5 + 4 / 5 . 8 + 4 / 8 . 11 + 4 / 11 . 14
= 4 ( 1 / 2 . 5 + 1 / 5 . 8 + 1 / 8 . 11 + 1 / 11 . 14 )
= 4 . [ 1/3 ( 1 /2 - 1/5 + 1/5 - 1/8 + 1/8 - 1/ 11 + 1/11 - 1/14 )]
= 4 / 3 ( 1/ 2 - 1/14 )
= 4/3 . 3/7
= 4 / 7
Vậy B = 4 / 7
M = 4/2.5 + 4/5.8 + 4/8.11 + 4/11.14 + 4/14.17 + 4/17.20
M= 4/3 . (1/2-1/5+1/5-1/8+1/8-1/11+1/11-1/14+1/14-1/17+1/17-1/20)
M= 4/3 . (1/2 - 1/20)
M= 4/3 . (10/20 - 1/20)
M= 4/3 . 9/20
M= 3/5
k nha