Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(33^{n+1}-33^n=33^n.33-33^n\)
\(=33^n\left(33-1\right)=33^n.32\)
Vì \(32⋮32\forall n\) nên \(33^n.32⋮32\forall n\)
Vậy \(33^{n+1}-33^n⋮32\left(đpcm\right)\)
b) \(\left(4n+7\right)^2-49=\left(4n+7\right)^2-7^2\)
\(=\left(4n+7-7\right)\left(4n+7+7\right)=4n\left(4n+14\right)\)
\(=8n^2+64n=8\left(n^2+8n\right)\)
Vì \(8⋮8\forall n\) nên \(8\left(n^2+8n\right)⋮8\forall n\)
Vậy \(\left(4n+7\right)^2-49⋮8\forall n\left(đpcm\right)\)
7) \(\frac{x+25}{75}+\frac{x+30}{70}=\frac{x+35}{65}+\frac{x+40}{60}\)
\(\Leftrightarrow\)\(\frac{x+25}{75}+1+\frac{x+30}{70}+1=\frac{x+36}{65}+1+\frac{x+40}{60}+1\)
\(\Leftrightarrow\)\(\frac{x+100}{75}+\frac{x+100}{70}=\frac{x+100}{65}+\frac{x+100}{60}\)
\(\Leftrightarrow\)\(\left(x+100\right)\left(\frac{1}{75}+\frac{1}{70}-\frac{1}{65}-\frac{1}{60}\right)=0\)
\(\Leftrightarrow\)\(x+100=0\) (vì 1/75 + 1/70 - 1/65 - 1/60 \(\ne\)0)
\(\Leftrightarrow\)\(x=-100\)
Vậy.....
7) \(\frac{x+25}{75}+\frac{x+30}{70}=\frac{x+35}{65}+\frac{x+40}{60}\)
\(\Leftrightarrow\)\(\frac{x+25}{75}+1+\frac{x+30}{70}+1=\frac{x+35}{65}+1+\frac{x+40}{60}+1\)
\(\Leftrightarrow\)\(\frac{x+100}{75}+\frac{x+100}{70}=\frac{x+100}{65}+\frac{x+100}{60}\)
\(\Leftrightarrow\)\(\left(x+100\right)\left(\frac{1}{75}+\frac{1}{70}-\frac{1}{65}-\frac{1}{60}\right)=0\)
\(\Leftrightarrow\)\(x+100=0\) (1/75 + 1/70 - 1/65 - 1/60 \(\ne\)0)
\(\Leftrightarrow\)\(x=-100\)
Vậy...
9: \(\dfrac{x-49}{50}+\dfrac{x-50}{49}=\dfrac{49}{x-50}+\dfrac{50}{x-49}\)
=>x-99=0
hay x=99
7: \(\Leftrightarrow\left(\dfrac{x+25}{75}+1\right)+\left(\dfrac{x+30}{70}+1\right)=\left(\dfrac{x+35}{65}+1\right)+\left(\dfrac{x+40}{60}+1\right)\)
=>x+100=0
hay x=-100
8:
Sửa đề: \(\dfrac{99-x}{101}+\dfrac{97-x}{103}+\dfrac{95-x}{105}+\dfrac{93-x}{107}=-4\)
\(\Leftrightarrow\left(\dfrac{99-x}{101}+1\right)+\left(\dfrac{97-x}{103}+1\right)+\left(\dfrac{95-x}{105}+1\right)+\left(\dfrac{93-x}{107}+1\right)=0\)
=>200-x=0
hay x=200
a) = (x+3).(x-3)^2-(x-3)(x+3)^2
=(x^2-9)(x-3)-(x^2-9)(x+3)
=(x^2-9)(x-3-x-3)
=-6(x^2-9)
các câu còn lại tương tự
\(a,\left(x+3\right)\left(x^2-3x+9\right)-\left(x-3\right)\left(x^2+3x+9\right)\)
\(=x^3+3-\left(x^3-3\right)\)
\(=x^3+3-x^3+3\)
\(=6\)
\(b,\left(x-5\right)\left(x^2+5x+25\right)-\left(x+5\right)\left(x^2-5x+25\right)\)
\(=x^3-5^3-x^3-5^3\)
\(=-125-125\)
\(=-250\)
1, \(x^2\) - 9 = 0
(\(x\) - 3)(\(x\) + 3) = 0
\(\left[{}\begin{matrix}x-3=0\\x+3=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
vậy \(x\) \(\in\) {-3; 3}
5, 4\(x^2\) - 36 = 0
4.(\(x^2\) - 9) = 0
\(x^2\) - 9 = 0
(\(x\) - 3)(\(x\) + 3) = 0
\(\left[{}\begin{matrix}x-3=0\\x+3=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
Vậy \(x\) \(\in\) {-3; 3}
\(\left(4n+3\right)^2-25=\left(4n+3-5\right)\left(4n+3+5\right)\)
\(=\left(4n-2\right)\left(4n+8\right)=2.\left(2n-1\right).4.\left(n+2\right)=8\left(2n-1\right)\left(n+2\right)⋮8\)
\(\left(2n+3\right)^2-9=\left(2n+3-3\right)\left(2n+3+3\right)\)
\(=2n\left(2n+6\right)=4n\left(n+3\right)⋮4\)
\(\left(3n+4\right)^2-16=\left(3n+4-4\right)\left(3n+4+4\right)\)
\(=3n\left(3n+8\right)⋮3\)
\(8^5+16^4=\left(2^3\right)^5+\left(2^4\right)^4=2^{15}+2^{16}=2^{15}.1+2^{15}.2=2^{15}\left(2+1\right)=2^{15}.3\)
Vậy tổng chia hết cho 3
\(2^8+2^9+2^{10}=2^8.1+2^8.2+2^8.2^2=2^8.\left(1+2+4\right)=2^8.7\)
Vậy tổng chia hết cho 7
449 + 833 + 1625
= (22)49 + (23)33 + (24)25
= 298 + 299 + 2100
= 298 . ( 1 + 2 + 22)
= 298. 7
7 ⋮ 7 ⇔298. 7 = 449 + 833 + 1625 ⋮7 (đpcm)
CM :\(4^{49}+8^{33}+16^{25}⋮7\)
\(4^{49}=64^{16}.4\)
ta có: 64 : 7 dư 1 nên 6416 chia 7 sẽ dư 116=1
\(\Rightarrow64^{16}.4\div7\) sẽ dư 4
\(8\div7\) dư 1 nên \(8^{33}\div7\) cũng sẽ dư 1
\(16^{25}=4^{50}=64^{16}.16\)
lập luận tương tự như trên bạn sẽ có
\(16^{25}\div7\)dư 16 tức là chia 7 dư 2
từ đó ta có:
\(4^{49}+8^{33}+16^{25}=64^{16}.4+8^{33}+64^{16}.16\div7\) sẽ dư 7 tức là nó chia hết cho 7(đpcm)