K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 1 2017

quy đồng lên cộng vào rút gọn

Thay x=2 vào phương trình \(x^2+3mx^2+4m^2x+4m^3=0\), ta được:

\(2^2+3\cdot m\cdot2^2+4\cdot m^2\cdot2+4m^3=0\)

\(\Leftrightarrow4+12m+8m^2+4m^3=0\)

\(\Leftrightarrow4\left(1+3m+2m^2+m^3\right)=0\)

\(4\ne0\)
nên \(m^3+2m^2+3m+1=0\)

30 tháng 4 2019

Ta có m> n <=> 4m>4n<=> -4m <-4n mà 2<3 <=> 2-4m < 3-4n

30 tháng 10 2019

a) \(\frac{1}{m+1}+\frac{1}{\left(m+1\right)\left(2m+1\right)}\)

\(=\frac{2m+1}{\left(m+1\right)\left(2m+1\right)}+\frac{1}{\left(m+1\right)\left(2m+1\right)}\)

\(=\frac{2m+2}{\left(m+1\right)\left(2m+1\right)}\)

\(=\frac{2\left(m+1\right)}{\left(m+1\right)\left(2m+1\right)}\)

\(=\frac{2}{2m+1}=\frac{4}{4m+2}\left(đpcm\right)\)

30 tháng 10 2019

b) \(\frac{1}{m+2}+\frac{1}{\left(m+1\right)\left(m+2\right)}+\frac{1}{\left(m+1\right)\left(4m+3\right)}\)

\(=\frac{m+1}{\left(m+1\right)\left(m+2\right)}+\frac{1}{\left(m+1\right)\left(m+2\right)}+\frac{1}{\left(m+1\right)\left(4m+3\right)}\)

\(=\frac{m+2}{\left(m+1\right)\left(m+2\right)}+\frac{1}{\left(m+1\right)\left(4m+3\right)}\)

\(=\frac{1}{m+1}+\frac{1}{\left(m+1\right)\left(4m+3\right)}\)

\(=\frac{4m+3}{\left(m+1\right)\left(4m+3\right)}+\frac{1}{\left(m+1\right)\left(4m+3\right)}\)

\(=\frac{4m+4}{\left(m+1\right)\left(4m+3\right)}\)

\(=\frac{4\left(m+1\right)}{\left(m+1\right)\left(4m+3\right)}\)

\(=\frac{4}{4m+3}\left(đpcm\right)\)