Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TL
tham khảo nha bn chứ tui ko bít làm :}}
(y’ = 4x – 3;y’ = 0 Leftrightarrow x = {3 over 4};yleft( {{3 over 4}} ight) = – {1 over 8})
Đỉnh (Ileft( {{3 over 4}; – {1 over 8}} ight))
Công thức chuyển trục tọa độ tịnh tiến theo
(overrightarrow {OI} :left{ matrix{
x = X + {3 over 4} hfill cr
y = Y – {1 over 8} hfill cr} ight.)
Phương trình của ((P)) đối với hệ tọa độ (IXY) là
(Y – {1 over 8} = 2{left( {X + {3 over 4}} ight)^2} – 3left( {X + {3 over 4}} ight) + 1 Leftrightarrow Y = 2{X^2})
k cho tui nick naruto nha thank
\(f\left(x\right)=sin^4x+cos^4x=sin^4x+2sin^2xcos^2x+cos^4x-2sin^2xcos^2x\)
\(=\left(sin^2x+cos^2x\right)^2-\frac{1}{2}sin^22x=1-\frac{1}{2}sin^22x\)
Ta có: \(0\le sin^22x\le1\)
suy ra \(\frac{1}{2}\le f\left(x\right)\le1\).
a) Công thức nghiệm của phương trình bậc hai Az2+Bz+C=0Az2+Bz+C=0 là
z=–B±δ2A(δ2=B2–4AC)z=–B±δ2A(δ2=B2–4AC)
Do đó z1+z2=–BAz1+z2=–BA;z1.z2=(–B–δ)(–B+δ)2A.2A=B2–δ24A2=4AC4A2=CAz1.z2=(–B–δ)(–B+δ)2A.2A=B2–δ24A2=4AC4A2=CA
Vậy công thức Viét vẫn còn đúng.
b) Giả sử z1+z2=αz1+z2=α; z1z2=βz1z2=β
z1,z2z1,z2 là hai nghiệm phương trình:
(z–z1)(z–z2)=0⇔z2–(z1+z2)z+z1z2=0⇔z2–αz+β=0(z–z1)(z–z2)=0⇔z2–(z1+z2)z+z1z2=0⇔z2–αz+β=0
Theo đề bài z1+z2=4–iz1+z2=4–i; z1z2=5(1–i)
nên z1,z2z1,z2 là hai nghiệm phương trình
z2–(4–i)z+5(1–i)=0z2–(4–i)z+5(1–i)=0 (*)
Δ=(4–i)2–20(1–i)=16–1–8i–20+20i=–5+12iΔ=(4–i)2–20(1–i)=16–1–8i–20+20i=–5+12i
Giả sử (x+yi)2=–5+12i⇔{x2–y2=–52xy=12(x+yi)2=–5+12i⇔{x2–y2=–52xy=12
⇔{x2–36x2=–5y=6x⇔{x4+5x2–36=0y=6x⇔{x=2y=3 hoặc {x=–2y=–3⇔{x2–36x2=–5y=6x⇔{x4+5x2–36=0y=6x⇔{x=2y=3 hoặc {x=–2y=–3
Vậy ΔΔ có hai căn bậc hai là ±(2+3i)±(2+3i).
Phương trình bậc hai (*) có hai nghiệm:
z1=12[4–i+(2+3i)]=3+iz1=12[4–i+(2+3i)]=3+i
z2=12[4–i–(2+3i)]=1–2iz2=12[4–i–(2+3i)]=1–2i
c) Nếu phương trình z2+Bz+C=0z2+Bz+C=0 có hai nghiệm z1,z2z1,z2 là hai số phức liên hợp, z2=¯¯¯¯¯z1z2=z1¯, thì theo công thức Vi-ét,B=–(z1+z2)=–(z1+¯¯¯¯¯z1)B=–(z1+z2)=–(z1+z1¯) là số thực, C=z1z2=z1¯¯¯¯¯z1C=z1z2=z1z1¯ là số thực.
Điều ngược lại không đúng vì nếu B,CB,C thực thì Δ=B2–4AC>0Δ=B2–4AC>0 hai nghiệm là số thực phân biệt, chúng không phải là liên hợp với nhau. ( Khi Δ≤0Δ≤0 thì phương trình mới có hai nghiệm là hai số phức liên hợp).
y'=3x2−6x+m.y'=3x2-6x+m.
Hàm số có hai cực trị khi y' = 0 có hai nghiệm phân biệt :
\(f\left(x\right)=\frac{1}{3}x^3+2x^2+3x-1\)
\(f'\left(x\right)=x^2+4x+3\)
\(f'\left(x\right)=0\Leftrightarrow x^2+4x+3=0\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-3\end{cases}}\)
Dựa vào hai nghiệm của đạo hàm bạn vẽ bảng biến thiên, thu được kết quả là:
\(y_{CĐ}=y\left(-3\right)=-1,y_{CT}=y\left(-1\right)=-\frac{7}{3}\)