K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 11 2021

a) Công thức nghiệm của phương trình bậc hai Az2+Bz+C=0Az2+Bz+C=0 là

                  z=–B±δ2A(δ2=B2–4AC)z=–B±δ2A(δ2=B2–4AC)

Do đó z1+z2=–BAz1+z2=–BA;z1.z2=(–B–δ)(–B+δ)2A.2A=B2–δ24A2=4AC4A2=CAz1.z2=(–B–δ)(–B+δ)2A.2A=B2–δ24A2=4AC4A2=CA

Vậy công thức Viét vẫn còn đúng.

b) Giả sử z1+z2=αz1+z2=α; z1z2=βz1z2=β

z1,z2z1,z2 là hai nghiệm phương trình:

(z–z1)(z–z2)=0⇔z2–(z1+z2)z+z1z2=0⇔z2–αz+β=0(z–z1)(z–z2)=0⇔z2–(z1+z2)z+z1z2=0⇔z2–αz+β=0

Theo đề bài z1+z2=4–iz1+z2=4–i; z1z2=5(1–i)

nên z1,z2z1,z2 là hai nghiệm phương trình

z2–(4–i)z+5(1–i)=0z2–(4–i)z+5(1–i)=0 (*)

Δ=(4–i)2–20(1–i)=16–1–8i–20+20i=–5+12iΔ=(4–i)2–20(1–i)=16–1–8i–20+20i=–5+12i

Giả sử (x+yi)2=–5+12i⇔{x2–y2=–52xy=12(x+yi)2=–5+12i⇔{x2–y2=–52xy=12

⇔{x2–36x2=–5y=6x⇔{x4+5x2–36=0y=6x⇔{x=2y=3 hoặc {x=–2y=–3⇔{x2–36x2=–5y=6x⇔{x4+5x2–36=0y=6x⇔{x=2y=3 hoặc {x=–2y=–3

Vậy ΔΔ có hai căn bậc hai là ±(2+3i)±(2+3i).

Phương trình bậc hai (*) có hai nghiệm:

z1=12[4–i+(2+3i)]=3+iz1=12[4–i+(2+3i)]=3+i

z2=12[4–i–(2+3i)]=1–2iz2=12[4–i–(2+3i)]=1–2i

c) Nếu phương trình z2+Bz+C=0z2+Bz+C=0 có hai nghiệm z1,z2z1,z2 là hai số phức liên hợp, z2=¯¯¯¯¯z1z2=z1¯, thì theo công thức Vi-ét,B=–(z1+z2)=–(z1+¯¯¯¯¯z1)B=–(z1+z2)=–(z1+z1¯) là số thực, C=z1z2=z1¯¯¯¯¯z1C=z1z2=z1z1¯ là số thực.

Điều ngược lại không đúng vì nếu B,CB,C thực thì Δ=B2–4AC>0Δ=B2–4AC>0 hai nghiệm là số thực phân biệt, chúng không phải là liên hợp với nhau. ( Khi Δ≤0Δ≤0 thì phương trình mới có hai nghiệm là hai số phức liên hợp).

28 tháng 1 2017

Đáp án D

21 tháng 12 2017

Đáp án: D.

3 tháng 4 2019

Chọn  D.

Do đó phương trình có 2 nghiệm thực và 4 nghiệm phức. Vậy nhận xét 4, 6 đúng.

15 tháng 8 2019

21 tháng 11 2017

 

 

10 tháng 9 2018

19 tháng 8 2019

Nếu z = a + bi thì z +  z  = 2a ∈ R; z. z  = a 2  + b 2  ∈ R

z và  z  là hai nghiệm của phương trình (x − z)(x −  z ) = 0

⇔ x 2  − (z +  z ) x + z. z  = 0

⇔  x 2  − 2ax + a 2  + b 2  = 0

14 tháng 9 2018

Nếu z = a + bi thì z +  z  = 2a  ∈  R; z. z = a 2 + b 2   ∈ R

z và  z  là hai nghiệm của phương trình (x − z)(x −  z ) = 0

⇔  x 2  − (z +  z ) x + z. z = 0

⇔  x 2  − 2ax +  a 2 + b 2  = 0

19 tháng 5 2017

Giải bài 5 trang 140 sgk Giải tích 12 | Để học tốt Toán 12

23 tháng 10 2018