Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt[4]{\frac{3-2\sqrt[4]{5}}{3+2\sqrt[4]{5}}}\)= \(\sqrt{\frac{\sqrt{5}-2}{3+2\sqrt[4]{5}}}\)
Từ đó thì
\(\frac{\sqrt[4]{5}-1}{\sqrt[4]{5}+1}\)= \(\sqrt{\frac{\sqrt{5}-2}{3+2\sqrt[4]{5}}}\)
<=> \(\frac{1+\sqrt{5}-2\sqrt[4]{5}}{1+\sqrt{5}+2\sqrt[4]{5}}=\frac{\sqrt{5}-2}{3-2\sqrt[4]{5}}\)
<=> \(3-\sqrt{5}-4\sqrt[4]{5}+2\sqrt{5}\sqrt[4]{5}\) = \(3-\sqrt{5}-4\sqrt[4]{5}+2\sqrt{5}\sqrt[4]{5}\)
Vậy cái đầu tiên là đúng
Đặt \(a=\sqrt[4]{5}\Leftrightarrow5=a^4\)
Ta cần chứng minh: \(\left(\frac{a+1}{a-1}\right)^4=\frac{3+2a}{3-2a}\)
Khai triển: \(VT=\left(\frac{a+1}{a-1}\right)^4=\frac{\left(a+1\right)^4}{\left(a-1\right)^4}\)
\(=\frac{2\left(3+2a\right).\left(1+a^2\right)}{2\left(3-2a\right).\left(1+a^2\right)}\)
\(\frac{3+2a}{3-2a}=VP\)(đpcm)
\(A=\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}=\sqrt{3+1+2\sqrt{3.1}}-\sqrt{3+1-2\sqrt{3.1}}\)
\(=\sqrt{(\sqrt{3}+1)^2}-\sqrt{(\sqrt{3}-1)^2}=|\sqrt{3}+1|-|\sqrt{3}-1|=2\)
\(B=\sqrt{4+5-2\sqrt{4.5}}+\sqrt{4+5+2\sqrt{4.5}}=\sqrt{(\sqrt{4}-\sqrt{5})^2}+\sqrt{(\sqrt{4}+\sqrt{5})^2}\)
\(=|\sqrt{4}-\sqrt{5}|+|\sqrt{4}+\sqrt{5}|=2\sqrt{5}\)
\(C\sqrt{2}=\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}=\sqrt{7+1-2\sqrt{7.1}}-\sqrt{7+1+2\sqrt{7.1}}\)
\(=\sqrt{(\sqrt{7}-1)^2}-\sqrt{(\sqrt{7}+1)^2}\)
\(=|\sqrt{7}-1|-|\sqrt{7}+1|=-2\Rightarrow C=-\sqrt{2}\)
----------------------------
\(7+4\sqrt{3}=(2+\sqrt{3})^2\Rightarrow 10\sqrt{7+4\sqrt{3}}=10(2+\sqrt{3})\)
\(\Rightarrow \sqrt{48-10\sqrt{7+4\sqrt{3}}}=\sqrt{28-10\sqrt{3}}=\sqrt{(5-\sqrt{3})^2}=5-\sqrt{3}\)
\(\Rightarrow 3+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}=3+5(5-\sqrt{3})=28-5\sqrt{3}\)
\(\Rightarrow D=\sqrt{5\sqrt{28-5\sqrt{3}}}\)
sai hết rùi bạn ơi