Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Leftrightarrow x^2+x+1-3x^2=2x\left(x-1\right)\)
=>-2x^2+x+1-2x^2+2x=0
=>-4x^2+3x+1=0
=>4x^2-3x-1=0
=>4x^2-4x+x-1=0
=>(x-1)(4x+1)=0
=>x=1(loại) hoặc x=-1/4(nhận)
b: \(\Leftrightarrow\dfrac{440}{x-2}-\dfrac{440}{x}=1\)
=>x(x-2)=440x-440x+880
=>x^2-2x-880=0
=>\(x=1\pm\sqrt{881}\)
c: \(\Leftrightarrow\dfrac{x+5+x}{x\left(x+5\right)}=\dfrac{1}{6}\)
=>x^2+5x=6(2x+5)
=>x^2+5x-12x-30=0
=>x^2-7x-30=0
=>(x-10)(x+3)=0
=>x=10 hoặc x=-3
d: =>(x-1)(x+1)-x=2x-1
=>x^2-1-x=2x-1
=>x^2-x-2x=0
=>x(x-3)=0
=>x=0(loại) hoặc x=3(nhận)
a/ ĐKXĐ: \(2\le x\le10\)
\(\Leftrightarrow\sqrt{x-2}+\sqrt{10-x}-x^2+12x-20-20=0\)
Đặt \(\sqrt{x-2}+\sqrt{10-x}=a>0\)
\(\Rightarrow a^2=8+2\sqrt{-x^2+12x-20}\Rightarrow-x^2+12x-20=\frac{\left(a^2-8\right)^2}{4}\)
Phương trình trở thành:
\(a+\frac{\left(a^2-8\right)^2}{4}-20=0\Leftrightarrow a^4-16a^2+4a-16=0\)
\(\Leftrightarrow a^2\left(a-4\right)\left(a+4\right)+4\left(a-4\right)=0\)
\(\Leftrightarrow\left(a-4\right)\left(a^3+4a^2+4\right)=0\)
\(\Leftrightarrow a=4\) (do \(a^3+4a^2+4>0\) \(\) \(\forall a>0\))
\(\Leftrightarrow\sqrt{x-2}+\sqrt{10-x}=4\)
Mà \(\sqrt{x-2}+\sqrt{10-x}\le\sqrt{2\left(x-2+10-x\right)}=4\)
Dấu "=" xảy ra khi và chỉ khi \(x-2=10-x\Leftrightarrow x=6\)
b/ ĐKXĐ:...
Ta có:
\(VT=1.\sqrt{x^2+x-1}+1.\sqrt{x-x^2+1}\le\frac{1+x^2+x-1}{2}+\frac{1+x-x^2+1}{2}=x+1\)
\(\Rightarrow x^2-x+2\le x+1\)
\(\Leftrightarrow x^2-2x+1\le0\)
\(\Leftrightarrow\left(x-1\right)^2\le0\Rightarrow x=1\)
Vậy pt có nghiệm duy nhất \(x=1\)
9) Ta có: \(\dfrac{2x+5}{x+3}+1=\dfrac{4}{x^2+2x-3}-\dfrac{3x-1}{1-x}\)
\(\Leftrightarrow\left(2x+5\right)\left(x-1\right)+x^2+2x-3=4+\left(3x-1\right)\left(x+3\right)\)
\(\Leftrightarrow2x^2-2x+5x-5+x^2+2x-3-4-3x^2-10x+x+3=0\)
\(\Leftrightarrow-4x=9\)
hay \(x=-\dfrac{9}{4}\)
10) Ta có: \(\dfrac{x-1}{x+3}-\dfrac{x}{x-3}=\dfrac{7x-3}{9-x^2}\)
\(\Leftrightarrow\dfrac{\left(x-1\right)\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}-\dfrac{x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{3-7x}{\left(x-3\right)\left(x+3\right)}\)
Suy ra: \(x^2-4x+3-x^2-3x-3+7x=0\)
\(\Leftrightarrow0x=0\)(luôn đúng)
Vậy: S={x|\(x\notin\left\{3;-3\right\}\)}
11) Ta có: \(\dfrac{5+9x}{x^2-16}=\dfrac{2x-1}{x+4}+\dfrac{3x-1}{x-4}\)
\(\Leftrightarrow\dfrac{\left(2x-1\right)\left(x-4\right)}{\left(x-4\right)\left(x+4\right)}+\dfrac{\left(3x-1\right)\left(x+4\right)}{\left(x-4\right)\left(x+4\right)}=\dfrac{9x+5}{\left(x-4\right)\left(x+5\right)}\)
Suy ra: \(2x^2-9x+4+3x^2+12x-x-4-9x-5=0\)
\(\Leftrightarrow5x^2-7x=0\)
\(\Leftrightarrow x\left(5x-7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{7}{5}\end{matrix}\right.\)
12) Ta có: \(\dfrac{2x}{2x-1}+\dfrac{x}{2x+1}=1+\dfrac{4}{\left(2x-1\right)\left(2x+1\right)}\)
\(\Leftrightarrow\dfrac{2x\left(2x+1\right)}{\left(2x-1\right)\left(2x+1\right)}+\dfrac{x\left(2x-1\right)}{\left(2x+1\right)\left(2x-1\right)}=\dfrac{4x^2-1+4}{\left(2x-1\right)\left(2x+1\right)}\)
Suy ra: \(4x^2+2x+2x^2-x-4x^2-3=0\)
\(\Leftrightarrow2x^2+x-3=0\)
\(\Leftrightarrow2x^2+3x-2x-3=0\)
\(\Leftrightarrow\left(2x+3\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=1\end{matrix}\right.\)
x= 0.761322463768116,
x= 0.369494467346496,
x=1.57660410301179
Em xin phép làm bài EZ nhất :)
4,ĐK :\(\forall x\in R\)
Đặt \(x^2+x+2=t\) (\(t\ge\dfrac{7}{4}\))
\(PT\Leftrightarrow\sqrt{t+5}+\sqrt{t}=\sqrt{3t+13}\)
\(\Leftrightarrow2t+5+2\sqrt{t\left(t+5\right)}=3t+13\)
\(\Leftrightarrow t+8=2\sqrt{t^2+5t}\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\ge-8\\\left(t+8\right)^2=4t^2+20t\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\ge\dfrac{7}{4}\\3t^2+4t-64=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\ge\dfrac{7}{4}\\\left(t-4\right)\left(3t+16\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\ge\dfrac{7}{4}\\\left[{}\begin{matrix}t=4\left(tm\right)\\t=-\dfrac{16}{3}\left(l\right)\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow x^2+x+2=4\)\(\Leftrightarrow x^2+x-2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
Vậy ....