Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1: vì tích 4 số : (x2-1);(x2-4);(x2-7);(x2-10) âm nên phải có 1 số âm hoặc 3 số ấm
ta có : x2-1>x2-4>x2-7>x2-10
TH1: 1 số âm :x2-10<x2-7
=>7<x2<10
=> x2=9=> x=\(\pm\)3
TH2: 3 số âm và 1 số dương
x2-4<x2-1
=> 1<x2<4 (không tồn tại số nào )
vậy x=3 hoặc x=-3
câu 1: hình như đề sai. phải nhân thêm (x2-7) nữa
Câu 2: GTNN của B=|x-a|+|x-b| với a<b
ta có Min B=b-a
A= (|x-a|+|x-d|)+(|x-c|+|x-b|)
=> Min A=d-a+c-b khi a<b<c<d
2/ Ta có : 4x - 3 \(⋮\) x - 2
<=> 4x - 8 + 5 \(⋮\) x - 2
<=> 4(x - 2) + 5 \(⋮\) x - 2
<=> 5 \(⋮\)x - 2
=> x - 2 thuộc Ư(5) = {-5;-1;1;5}
Ta có bảng :
x - 2 | -5 | -1 | 1 | 5 |
x | -3 | 1 | 3 | 7 |
Bài 1:
\(\text{a) }x.x^2.x^3.x^4.x^5.....x^{49}.x^{50}\)
\(=x^{1+2+3+4+5+...+49+50}\)
\(=x^{\frac{51.50}{2}}\)
\(=x^{1275}\)
\(\text{b) Ta có:}\)
\(4^{15}=\left(2^2\right)^{15}=2^{2.15}=2^{30}\)
\(8^{11}=\left(2^3\right)^{11}=2^{3.11}=2^{33}\)
\(\text{Vì }2^{30}< 2^{33}\text{ nên }4^{15}< 8^{11}\)
Bài 2: Tìm x
\(\left(x-1\right)^4:3^2=3^6\)
\(\Rightarrow\left(x-1\right)^4=3^6\times3^2\)
\(\Rightarrow\left(x-1\right)^4=3^8\)
\(\Rightarrow\left(x-1\right)^4=3^{2.4}\)
\(\Rightarrow\left(x-1\right)^4=\left(3^2\right)^4\)
\(\Rightarrow x-1=9\)
\(\Rightarrow x=10\)
Bài 3 và bài 4 mk làm sau
Bài 1 : a) \(x.x^2.x^3.x^4.....x^{49}.x^{50}=x^{1+2+3+...+49+50}\) (Dễ rồi tự tính)
b) \(\hept{\begin{cases}4^{15}=\left(2^2\right)^{15}=2^{30}\\8^{11}=\left(2^3\right)^{11}=2^{33}\end{cases}}\)Rồi tự so sánh đi
Bài 2 :
\(\left(x-1\right)^4\div3^2=3^6\Leftrightarrow\left(x-1\right)^4=3^8=\left(3^2\right)^4=9^4\Leftrightarrow x-1=9\Leftrightarrow x=10\)
Bài 3 :
\(\hept{\begin{cases}27^{15}=\left(3^3\right)^{15}=3^{45}\\81^{11}=\left(3^4\right)^{11}=3^{44}\end{cases}}\) nt
1. \(x⋮12,x⋮10\Rightarrow x\in BC(12,10)\)và -200 < x < 200
Theo đề bài , ta có :
\(12=2^2\cdot3\)
\(10=2\cdot5\)
\(\Rightarrow BCNN(10,12)=2^2\cdot3\cdot5=60\)
\(\Rightarrow BC(10,12)=B(60)=\left\{0;60;-60;120;-120;180;-180;240;...\right\}\)
Mà \(x\in BC(10,12)\)và -200 < x < 200 => \(x\in\left\{0;60;-60;120;-120;180;-180\right\}\)
Học tốt
a) \(|2x+1|< 2\)
\(\Leftrightarrow\orbr{\begin{cases}2x+1< 2\\-2x-1< 2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x< \frac{1}{2}\\x>-\frac{3}{2}\end{cases}}\)
Vậy \(-\frac{3}{2}< x< \frac{1}{2}\)
11<x2<44<=>x2={16;25;36}<=>x={\(\pm\)4;\(\pm\)5;\(\pm\)6}
Vậy các giá trị nguyên của x là -6;-5;-4;4;5 và 6
a: =>5x=3x-6
=>2x=-6
hay x=-3
b: \(\Leftrightarrow\left(x-3\right)^2=4\cdot5^2=100\)
=>x-3=10 hoặc x-3=-10
=>x=13 hoặc x=-7
c: \(\left|x^3+1\right|+2\ge2\forall x\)
Dấu '=' xảy ra khi x=-1
Bài 1:
a) +) Ta thấy các số nguyên thỏa mãn điều kiện trên là -42, -41, -40, ...., 40, 41, 42, 43, 44
Trong đó có các cặp số đối nhau nên ta có tổng của dãy số trên bằng : 43 + 44 = 87
+ ) Ta thấy tập hợp các số nguyên x thỏa mãn điều kiện trên chứa các cặp số nguyên đối nhau nên tổng của chúng bằng 0.
Bài 2:
a) Do x, y và 2005 đều là số tự nhiên nên \(x-5\) và 3y là các số tự nhiên.
Vậy thì \(x-5\inƯ\left(2005\right)=\left\{1;5;401;2005\right\}\)
Ta có bảng:
x-5 | 1 | 5 | 401 | 2005 |
x | 6 | 10 | 406 | 2010 |
3y | 2005 | 401 | 5 | 1 |
y | Không là số tự nhiên | Không là số tự nhiên | Không là số tự nhiên | 0 |
L | L | L | N |
Vậy ta có cặp số (x ; y) = (2010; 0)
b) \(x^2+x+2\) là số nguyên tố.
Ta thấy \(x^2+x+2=x\left(x+1\right)+2\)
Do x là số tự nhiên nên \(x\left(x+1\right)⋮2\Rightarrow\left[x\left(x+1\right)+2\right]⋮2\)
Vậy để \(x^2+x+2\) là số nguyên tố thì \(x^2+x+2=2\)
Vậy x = 0.
Em cảm ơn cô Huyền ạ! Cô kết bạn với em đi ạ. Em cảm ơn cô!!
a, \(\left|2x+1\right|< 2\)
\(\Rightarrow\left|2x+1\right|\in\left\{0;1\right\}\)
\(\Rightarrow2x+1\in\left\{-1;0;1\right\}\)
\(\Rightarrow2x\in\left\{-2;-1;0\right\}\)
\(\Rightarrow x\in\left\{-1;-\dfrac{1}{2};0\right\}\)
mà \(x\in Z\) nên \(x\in\left\{-1;0\right\}\)
b, \(11< x^2< 44\)
\(\Rightarrow x^2\in\left\{16;25;36\right\}\Rightarrow x\in\left\{-6;-5;-4;4;5;6\right\}\)
Vậy.......
Chúc bạn học tốt!!!
a) Ta có :
\(\left|2x+1\right|< 2\)
Mà \(\left|2x+1\right|\ge0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left|2x+1\right|=0\\\left|2x+1\right|=1\end{matrix}\right.\)
TH1 :
\(\left|2x+1\right|=0\)
\(\Leftrightarrow2x+1=0\)
\(\Leftrightarrow2x=-1\)
\(\Leftrightarrow x=\dfrac{-1}{2}\left(TM\right)\)
TH2 :
\(\left|2x+1\right|=1\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+1=1\\2x+1=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x=0\\2x=-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)\(\left(TM\right)\)
Vậy \(x\in\left\{\dfrac{-1}{2};0;-1\right\}\)