K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
30 tháng 4

Hai đường tròn cắt nhau tại tối đa 2 điểm, do đó 4 đường tròn cắt nhau tại tối đa là:

\(2.3+2.2+2.1=12\) điểm

12 tháng 8 2016

Tham khỏa tại: Đáp án đề thi vào lớp 10 môn Toán THPT chuyên Lê Quý Đôn - Khánh Hòa

12 tháng 8 2016

Bạn có link xem không ạ

21 tháng 3 2015

câu c hình như bn nhầm đỉnh tứ giác thì phải

d) bn cm ED là phân giác góc AEB (giống câu a) rồi dùng t/c phân giác trog và ngoài của tg AEB nhé

17 tháng 5 2016

kho qua

a: góc AEB=1/2*180=90 độ

góc FIB+góc FEB=180 độ

=>FIBE nội tiếp

b: góc ACB=1/2*180=90 độ

=>AC vuông góc DB

Xét ΔCAF và ΔCEA có

góc CAF=góc CEA

góc ACF chung

=>ΔCAF đồng dạng với ΔCEA

=>CA^2=AF*AE
Xét ΔDAB vuông tại D có AC vuông góc DB

nên CA^2=CD*CB=AF*AE

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

\(\text{a) Xét tứ giác ADMO có:}\)

∠DMO =90o (do M là tiếp tuyến của (O))

∠DAO =90o (do AD là tiếp tuyến của (O))

=> ∠DMO + ∠DAO = 180o

=> Tứ giác ADMO là tứ giác nội tiếp.

\(\text{b) Do D là giao điểm của 2 tiếp tuyến DM và DA nên OD là tia phân giác của ∠AOM}\)

=>(AOD = \(\frac{1}{2}\)∠AOM

Mặt khác ta có (ABM là góc nội tiếp chắn cung AM

=> ∠ABM = \(\frac{1}{2}\)∠AOM

=> ∠AOD = ∠ABM

Mà 2 góc này ở vị trí đồng vị

=> OD // BM

Xét tam giác ABN có:

OM// BM; O là trung điểm của AB

=> D là trung điểm của AN

c) Ta có: ΔOBM cân tại O ;OE ⊥MB =>OE là đường trung trực của MB

=>EM = EB => ΔMEB cân tại E => ∠EMB = ∠MEB (1)

ΔOBM cân tại O => ∠OMB = ∠OBM (2)

Cộng (1) và (2) vế với vế, ta được:

∠EMB + ∠OMB = ∠MEB + ∠OBM ⇔ ∠EMO =∠EOB ⇔ ∠EOB =90o

=>OB ⊥ BE

Vậy BE là tiếp tuyến của (O).

d) Lấy điểm E trên tia OA sao cho OE = \(\frac{OA}{3}\)

Xét tam giác OAI có OI vừa là đường cao vừa là trung tuyến

=> Tam giác OAI cân tại I => IA = IB; ∠IBA = ∠IAB

Ta có:

\(\hept{\begin{cases}\widehat{IBA}=\widehat{IAB}\\\widehat{IBA}+\widehat{INA}=90^0\\\widehat{NAI}+\widehat{IAB}=\widehat{NAB}=90^0\end{cases}}\)

=> ∠NAI = ∠INA => ΔINA cân tại I => IA = IN

Tam giác NAB vuông tại A có: IA = IN = IB

=> IA là trung tuyến của tam giác NAB

Xét ΔBNA có:

IA và BD là trung tuyến; IA ∩ BD = {J}

=> J là trọng tâm của tam giác BNA

Xét tam giác AIO có:

\(\frac{\text{AJ}}{AI}=\frac{AE}{A0}=\frac{2}{3}\Rightarrow\text{JE}\text{//}OI\)

=> J nằm trên đường thẳng d vuông góc với AB và cách O một khoảng bằng R/3.

Phần đảo: Lấy điểm J' bất kì thuộc đường thẳng d

Do d// OI (cùng vuông góc AB) nên ta có:

\(\frac{\text{AJ}}{AI}=\frac{AE}{A0}\)

\(\text{MÀ}\frac{AE}{AO}=\frac{2}{3}\Rightarrow\frac{\text{AJ}}{AI}=\frac{2}{3}\)

AI là trung tuyến của tam giác NAB

=> J' là trọng tâm tam giác NAB

Vậy khi M di chuyển trên (O) thì J di chuyển trên đường thẳng d vuông góc với AB và cách O một khoảng là R/3.

HÌNH Ở TRONG THỐNG KÊ HỎI ĐÁP NHA

19 tháng 2 2022

loading...  

14 tháng 5 2018

O A B D C I H M d

1) Do DB và DC là 2 tiếp tuyến của (O) => ^DBO=^DCO=900 

=> Tứ giác DBOC nội tiếp đường tròn (Tâm là trung điểm OD) (1)

Xét tứ giác DHOC: ^DHO=^DCO=900 

=> Tứ giác DHOC nội tiếp đường tròn (Tâm là trung điểm DO) (2)

Từ (1) và (2) => 5 điểm D,H,B,O,C cùng nằm trên 1 đường tròn (đpcm)

DB và DC là 2 tiếp tuyến của (O) => DB=DC => D thuộc trung trực của BC

Mà BC là dây cung của (O) nên O cũng thuộc trung trực của BC  

=> OD \(\perp\)BC (tại I) => ^DIA=900

Xét tứ giác DIHA: ^DHA=^DIA=900 (cmt) => Tứ giác DIHA nội tiếp đường tròn (đpcm).

2) Dễ chứng minh \(\Delta\)OBI ~ \(\Delta\)ODB (g.g) => \(\frac{OB}{OD}=\frac{OI}{OB}\Rightarrow OB^2=OI.OD\)

Mà OB=OM (cùng nằm trên (O)) => \(OM^2=OI.OD\)(3)

Hoàn toàn c/m được \(\Delta\)OHD ~ \(\Delta\)OIA  (g.g) => \(\frac{OH}{OI}=\frac{OD}{OA}\Rightarrow OH.OA=OI.OD\)(4)

Từ (3) và (4) => \(OM^2=OH.OA\)=> \(\frac{OM}{OA}=\frac{OH}{OM}\)

Xét \(\Delta\)OHM và \(\Delta\)OMA: \(\frac{OM}{OA}=\frac{OH}{OM}\); ^MOA chung => \(\Delta\)OHM ~ \(\Delta\)OMA (c.g.c)

=> ^OHM=^OMA. Ta có ^OHM=900 => ^OMA=900 => AM là tiếp tuyến của (O) (đpcm).

3) Ta có 5 điểm B,H,D,O,C cùng thuộc 1 đường tròn (cmt)

Suy ra Tứ giác BHOC và tứ giác DHOC nội tiếp đường tròn

Tứ giác BHOC nội tiếp đg tròn => ^ABH=^COH (Cùng bù ^HBC)

Dễ thấy ^BAH=^HDO (Cùng phụ ^DOA) (5)

Do tứ giác DHOC nôi tiếp đg tròn => ^HDO=^OCH (6)

Từ (5); (6) => ^BAH=^OCH

Xét \(\Delta\)AHB và \(\Delta\)CHO: ^ABH=^COH; ^BAH=^OCH => \(\Delta\)AHB ~ \(\Delta\)CHO (g,g)

\(\Rightarrow\)\(\frac{HB}{HO}=\frac{AH}{HC}\Rightarrow HB.HC=AH.HO\)(7)

Nhận thấy Đường tròn (O) có tiếp tuyến AM cố định (Do A cố định) 

Mà MH\(\perp\)AO tại H => H cố định => AH và HO có giá trị không đổi 

Nên AH.HO không đổi (8)

Từ (7) và (8) => HB.HC không đổi khi d quay quanh A (đpcm).

29 tháng 12 2021

a: Xét tứ giác OAMC có 

\(\widehat{OAM}+\widehat{OCM}=180^0\)

Do đó: OAMC là tứ giác nội tiếp

2 tháng 1

m có h.vẽ ko