K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 1 2016

 

trả lời: hiện tại tổng số nợ anh A là 9triêu8 , anh ta phải lấy 9triêu8 ra trả nốt 2 người ,mà a ta mua xe chỉ hết có 9triêu7 vậy là số tiền a ta mua xe với lại tiền bỏ ra thì số tiền bỏ ra nó dư 100k ,vậy là số tiền 100k mà anh A cầm trong tay phải được trừ đi,vi vậy ta xẽ lấy (9triêu8 phải trả-100k trong tay)= 9triêu7 mua xe. vì vậy bạn xẽ ko thấy hụt hay dư ra ở đâu cả.

17 tháng 12 2016

ngu the 9 trieu mua 7 xe

20 tháng 4 2018

Vì dãy số nằm trong khoảng từ 1-10 nên số thứ tự của nó có giá trị bằng chính nó

Ta có: Tổng của dãy là:

(1+1)+(2+2)+(3+3)+...+(10+10) = 2(1+2+3+...+10)=2.(10.11):2=110

Đáp số: 110

21 tháng 6 2017

Giả sử tồn tại 50 số thảo mãn đề bài

Gọi các số đó lần lượt là a1, a2, a3, a4, ... a50

Theo bài ra ta có:

a1 + a2 + a3 + ... + a10 < 0 (1)

a11 + a12 + ... + a20 < 0

=> a1 + a2 + ... + a20 < 0

Mà a1 + a2 + ... + a17 > 0 (theo đề bài)

=> a18 + a19 + a20 < 0 

Mà a11 + a12 + ... + a20 < 0

=> a11 + a12 + a13 + ... + a17 < 0 (2)

Từ (1), (2), ta có: a1 + a2 + a3 + ... + a17 < 0 (mâu thuẫn với đề bài)

Vậy, không tồn tại 50 số thoả mãn yêu cầu đề bài

Giả sử tồn tại 50 số thảo mãn đề bài

Gọi các số đó lần lượt là a1, a2, a3, a4, ... a50

Theo bài ra ta có:

a1 + a2 + a3 + ... + a10 < 0 (1)

a11 + a12 + ... + a20 < 0

=> a1 + a2 + ... + a20 < 0

Mà a1 + a2 + ... + a17 > 0 (theo đề bài)

=> a18 + a19 + a20 < 0 

Mà a11 + a12 + ... + a20 < 0

=> a11 + a12 + a13 + ... + a17 < 0 (2)

Từ (1), (2), ta có: a1 + a2 + a3 + ... + a17 < 0 (mâu thuẫn với đề bài)

Vậy, không tồn tại 50 số thoả mãn yêu cầu đề bài

Ai trên 10 điểm hỏi đáp thì mình nha mình đang cần gấp chỉ còn 59 điểm là tròn rồi mong các bạn hỗ trợ mình sẽ đền bù xứng đáng

DẠNG 2: DÃY SỐ MÀ CÁC SỐ HẠNG KHÔNG CÁCH ĐỀU.Bài 1. Tính A = 1.2 + 2.3 + 3.4 + … + n.(n + 1)Hướng dẫn giảiCách 1:Ta thấy mỗi số hạng của tổng trên là tích của hai số tự nhiên liên tiếp, khi đó:Gọi a1 = 1.2 → 3a1 = 1.2.3 → 3a1= 1.2.3 - 0.1.2a2 = 2.3 → 3a2 = 2.3.3 → 3a2= 2.3.4 - 1.2.3a3 = 3.4 → 3a3 = 3.3.4 → 3a3 = 3.4.5 - 2.3.4…………………..an-1 = (n - 1)n → 3an-1 =3(n - 1)n → 3an-1 = (n - 1)n(n + 1) - (n - 2)(n - 1)nan = n(n + 1) → 3an = 3n(n + 1) → 3an = n(n...
Đọc tiếp

DẠNG 2: DÃY SỐ MÀ CÁC SỐ HẠNG KHÔNG CÁCH ĐỀU.

Bài 1. Tính A = 1.2 + 2.3 + 3.4 + … + n.(n + 1)

Hướng dẫn giải

Cách 1:

Ta thấy mỗi số hạng của tổng trên là tích của hai số tự nhiên liên tiếp, khi đó:

Gọi a1 = 1.2 → 3a1 = 1.2.3 → 3a1= 1.2.3 - 0.1.2
a2 = 2.3 → 3a2 = 2.3.3 → 3a2= 2.3.4 - 1.2.3
a3 = 3.4 → 3a3 = 3.3.4 → 3a3 = 3.4.5 - 2.3.4
…………………..
an-1 = (n - 1)n → 3an-1 =3(n - 1)n → 3an-1 = (n - 1)n(n + 1) - (n - 2)(n - 1)n
an = n(n + 1) → 3an = 3n(n + 1) → 3an = n(n + 1)(n + 2) - (n - 1)n(n + 1)

Cộng từng vế của các đẳng thức trên ta có:

3(a1 + a2 + … + an) = n(n + 1)(n + 2)

3(a1 + a2 + ... + an) = n(n + 1)(n + 2) ⇒ A = \frac{{n\left( {n + 1} \right)\left( {n + 2} \right)}}{3}

Cách 2: Ta có

3A = 1.2.3 + 2.3.3 + … + n(n + 1).3

3A =  1.2.(3 - 0) + 2.3.(3 - 1) + … + n(n + 1)[(n - 2) - (n - 1)]

3A = 1.2.3 - 1.2.0 + 2.3.3 - 1.2.3 + … + n(n + 1)(n + 2) - (n - 1)n(n + 1)

3A = n(n + 1)(n + 2)

\Rightarrow A = \frac{{n\left( {n + 1} \right)\left( {n + 2} \right)}}{3}

* Tổng quát hoá ta có:

k(k + 1)(k + 2) - (k - 1)k(k + 1) = 3k(k + 1). Trong đó k = 1; 2; 3; …

Ta dễ dàng chứng minh công thức trên như sau:

k(k + 1)(k + 2) - (k - 1)k(k + 1) = k(k + 1)[(k + 2) - (k - 1)] = 3k(k + 1)

Bài 2. Tính B = 1.2.3 + 2.3.4 + ... + (n - 1)n(n + 1)

Hướng dẫn giải

Áp dụng tính kế thừa của bài 1 ta có:

4B = 1.2.3.4 + 2.3.4.4 + ... + (n - 1)n(n + 1).4

4B = 1.2.3.4 - 0.1.2.3 + 2.3.4.5 - 1.2.3.4 + ... + (n - 1)n(n + 1)(n + 2) - [(n - 2)(n - 1)n(n + 1)]

4B = (n - 1)n(n + 1)(n + 2) - 0.1.2.3 = (n - 1)n(n + 1)(n + 2)

\Rightarrow B = \frac{{\left( {n - 1} \right).n.\left( {n + 1} \right)\left( {n + 2} \right)}}{4}

Bài 3. Tính C = 1.4 + 2.5 + 3.6 + 4.7 + … + n(n + 3)

Hướng dẫn giải

Ta thấy: 1.4 = 1.(1 + 3)

2.5 = 2.(2 + 3)

3.6 = 3.(3 + 3)

4.7 = 4.(4 + 3)

…….

n(n + 3) = n(n + 1) + 2n

Vậy C = 1.2 + 2.1 + 2.3 + 2.2 + 3.4 + 2.3 + … + n(n + 1) +2n

C = 1.2 + 2 +2.3 + 4 + 3.4 + 6 + … + n(n + 1) + 2n

C = [1.2 +2.3 +3.4 + … + n(n + 1)] + (2 + 4 + 6 + … + 2n)

⇒ 3C = 3.[1.2 +2.3 +3.4 + … + n(n + 1)] + 3.(2 + 4 + 6 + … + 2n)

3C = 1.2.3 + 2.3.3 + 3.4.3 + … + n(n + 1).3 + 3.(2 + 4 + 6 + … + 2n)

3C = n(n + 1)(n + 2) + \frac{3\left(2n\ +\ 2\right)n}{2}

⇒ C = \frac{n(n+1)(n+2)}{3} + \frac{3\left(2n\ +\ 2\right)n}{2} = \frac{n(n+1)(n+5)}{3}

Bài 4: Tính D = 1+ 22 + 32 + .... + n2

Hướng dẫn giải

Nhận xét: Các số hạng của bài 1 là tích của hai số tự nhiên liên tiếp, còn ở bài này là tích của hai số tự nhiên giống nhau. Do đó ta chuyển về dạng bài tập 1:

Ta có:

A = 1.2 + 2.3 + 3.4 + ...+ n(n + 1)

A = 1.(1 + 1) + 2.(1 + 2) + 3.(1 + 3) + .... + n.(n + 1)

A = 12 + 1.1 + 22 + .1 + 32 + 3.1 + ... + n2 + n.1

A = (12 + 22 + 32 + .... + n2) + (1 + 2 + 3 + ... + n)

Mặt khác theo bài tập 1 ta có:

A = \frac{{n\left( {n + 1} \right)\left( {n + 2} \right)}}{3} và 1 + 2 + 3 + .... + n = \frac{{n\left( {n + 1} \right)}}{2}

⇒D = 12 + 22 + 32 + .... + n2 = \frac{{n\left( {n + 1} \right)\left( {n + 2} \right)}}{3} - \frac{{n\left( {n + 1} \right)}}{2} = \frac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}

Bài 5: Tính E = 13 + 23 + 33 + ... + n3

Hướng dẫn giải

Tương tự bài toán ở trên, xuất phát từ bài toán 2, ta đưa tổng B về tổng E:

B = 1.2.3 + 2.3.4 + 4.5.6 + ... + (n - 1)n(n + 1)

B = (2 - 1).2.(2 + 1) + (3 -1).3.(3 +1) + ....+ (n - 1).n.(n + 1)

B = (23 - 2) + (33 - 3) + .... + (n3 - n)

B = (23 + 33 + .... +n3) - (2 + 3 + ... + n)

B = (13 + 23 + 33 + ... + n3) - (1 + 2 + 3 + ... + n)

B = (13 + 23 + 33 + ... + n3) - \frac{n(n + 1)}{2}

⇒ 13 + 23 + 33 + ... + n3 = B + \frac{n(n + 1)}{2}

Mà B = \frac{{\left( {n - 1} \right).n\left( {n + 1} \right)\left( {n + 2} \right)}}{4}

⇒ E = 13 + 23 + 33 + ... + n3 = \frac{{\left( {n - 1} \right).n\left( {n + 1} \right)\left( {n + 2} \right)}}{4} + \frac{n(n + 1)}{2}

3
18 tháng 10 2021

giúp mik

18 tháng 10 2021

mình thấy bài bạn có đáp án hết rồi mà?

21 tháng 5 2021

A. 565
B. 575
C. 580
D. 585
Giải thích :
tổng năm số đầu tiên là : 110 + 111 + 112 + 113 + 114 = 560
Tổng năm số tiếp theo : 115 + 116 + 117 + 118 + 119 = 585

2.Đáp án B 23
21 tháng 5 2021

cảm ơn bnyeu

6 tháng 9 2016

Gọi 5 số lần lượt là a ; b ;c ;d ; e

Theo đề ra ta có

(a+b) = x

(b+c) = y

(c+d) = z

(d+e) =  t

(e+a) = q

Với \(x;y;z;t;q>0\)

\(\Rightarrow\left(a+b\right)+\left(b+c\right)+\left(c+d\right)+\left(d+e\right)+\left(e+a\right)=x+y+z+t+q\)

\(\Rightarrow2\left(a+b+c+d+e\right)=x+y+z+t+q\)

\(\Rightarrow a+b+c+d+e=\frac{x+y+z+t+q}{2}\)

\(\Rightarrow\frac{x+y+z+t+q}{2}< 0\left(1\right)\)

Mặt khác vì \(x;y;z;t;q>0\)

\(\Rightarrow x+y+z+t+q>0\)

Nhân hai vế với \(\frac{1}{2}\)

Vì 1/2 lớn hơn 0 nên bất đẳng thức giứ nguyên chiều

\(\Rightarrow\left(x+y+z+t+q\right)\frac{1}{2}>0.\frac{1}{2}\)

\(\Rightarrow\frac{x+y+z+t+q}{2}>0\left(2\right)\)

Vì (1) mâu thuẫn với (2) nên 

\(x;y;z;t;q\in\varnothing\)

7 tháng 9 2016

cảm ơn cậu nhiều