Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: vuông tại A
a: Xét ΔADB vuông tại A và ΔEDB vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔADB=ΔEDB
b: Xét ΔDAK vuông tại A và ΔDEC vuông tại E có
DA=DE
góc ADK=góc EDC
=>ΔDAK=ΔDEC
=>AK=EC
Tham khảo:
a) xét Δ vuông ADB và Δ vuông EDB có:
BD chung, ∠ABD = ∠EBD (gt) => ΔADB = ΔEDB (ch - gn)
b) ΔADB = ΔEDB => AD = ED
xét ΔADK và ΔEDC có:
AD = ED (cmt), ∠ADK = ∠EDC (đối đỉnh), ∠DAK = ∠DEC (= 90°) => ΔADK = ΔEDC (g - c - g)
=> AK = EC
c) ΔADK = ΔEDC => DK = DC => ΔDKC cân tại D
D là giao điểm của KE và CA là 2 đg cao của ΔBKC => BF cũng là đường cao của ΔBKC
=> BF ⊥ KC <=> DF ⊥ KC
mà ΔDKC cân tại D => DF cũng là đg trung tuyến
DG = 2GF => G là giao điểm của 3 đg trung tuyến của ΔDKC
=> KG đi qua trung điểm của CD => K, G, M thẳng hàng (do M là trung điểm của CD
a/ Xét tg vuông ABD và tg vuông BDE có
\(\widehat{ABD}=\widehat{EBD}\)
\(BD\) chung
\(\Rightarrow\Delta ABD=\Delta BDE\) (Hai tg vuông có cạnh huyền và góc nhọn tương ứng bằng nhau) \(\Rightarrow BA=BE\)
b/ Xét tg vuông AKD và tg vuông ECD
Do \(\Delta ABD=\Delta BDE\Rightarrow DA=DE\)
\(\widehat{ADK}=\widehat{EDC}\) (góc đối đỉnh)
\(\Rightarrow\Delta ADK=\Delta ECD\) (Hai tg vuông có cạnh góc vuông và góc nhọn tương ứng bằng nhau)\(\Rightarrow DK=DC\Rightarrow\Delta DKC\) cân tại D
c/ ta có
\(\Delta ADK=\Delta ECD\Rightarrow AK=EC\)
\(BA=BE\) (c/m ở câu a)
\(\Rightarrow\frac{BA}{BE}=\frac{AK}{EC}=1\) => AE//KC (Talet trong tam giác)
d/ Ta có
\(BA=BE;AK=EC\Rightarrow BA+AK=BE+EC\Rightarrow BK=BC\Rightarrow\Delta BKC\) cân tại B
Kéo dài BD cắt KC tại I'; do BD là phân giác của \(\widehat{B}\) => BI' là trung tuyến của tg BKC (trong tg cân đường phân giác góc ở đỉnh đồng thời là đường trung tuyến) => I' là trung điểm của KC. Mà I cũng là trung điểm của KC nên I' trùng I => B;D;I thẳng hàng
a. ta có : \(BC^2=AB^2+AC^2\)
\(10^2=8^2+6^2\)
=> ABC vuông tại A ( pitago đảo )
b. xét tam giác vuông BAD và tam giác vuông BED có:
B: góc chung
BD : cạnh chung
Vậy...
=> AD = AE ( 2 góc tưng ứng )
a, Ta có : \(BC^2=AB^2+AC^2\Rightarrow100=36+64\)* đúng *
Vậy tam giác ABC vuông tại A
b, Xét tam giác ABD và tam giác CBD ta có :
^ABD = ^CBD ( BD là phân giác )
^BAD = ^BCD = 900
BD _ chung
Vậy tam giác ABD và tam giác CBD ( ch - gn )
=> AD = DC ( 2 cạnh tương ứng )
ta có : BC2 = 102 = 100
AC2 +AB2 =62 + 82 =36 +64 = 100
BC2 =AC2 + AB2
suy ra tam giác ABC vuông tại A ( định lý pytago đảo )
a, AB = 6 => AB^2 = 6^2 = 36
AC = 8 => AC^2 = 8^2 = 64
=> AB^2 + AC^2 = 36 + 64 = 100
BC = 10 => BC^2 = 10^2 = 100
=> BC^2 = AB^2 + AC^2
=> tam giác ABC vuông tại A (định lí PTG đảo)