K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2023

\(3xy+6x=5\)

\(\Rightarrow3x\left(y+2\right)=5\)

Ta có bản sau:

3x1-15-5
y+25-51-1
x\(\dfrac{1}{3}\)\(-\dfrac{1}{3}\)\(\dfrac{5}{3}\)\(-\dfrac{5}{3}\)
y3-7-1-3

Mà \(x,y\) nguyên nên không có x, y thỏa mãn 

\(\Rightarrow x,y\in\varnothing\)

=>x(3y+6)=5

=>(x;3y+6) thuộc {(1;5); (-1;-5); (-5;-1); (5;1)}

mà x,y nguyên

nên \(\left(x,y\right)\in\varnothing\)

NV
21 tháng 2 2021

\(\Leftrightarrow3x\left(y+2\right)+y+2-54=0\)

\(\Leftrightarrow\left(3x+1\right)\left(y+2\right)=54\)

Mặt khác ta có \(3x+1\) luôn chia 3 dư 1, mà 54 có đúng 1 ước dương chia 3 dư 1 là 1

\(\Rightarrow\left\{{}\begin{matrix}3x+1=1\\y+2=54\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=0\\y=52\end{matrix}\right.\) (ktm x;y nguyên dương)

Do đó pt đã cho ko có nghiệm nguyên dương

20 tháng 11 2018

bài này mà lớp 9 á

6 tháng 7 2021

\(\left\{{}\begin{matrix}mx-y=2\\3x+my=5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=mx-2\\3x+my=5\end{matrix}\right.\)

\(\Rightarrow3x+m\left(mx-2\right)=5\)

\(\Leftrightarrow x\left(3+m^2\right)=5+2m\)

\(\Leftrightarrow x=\dfrac{5+2m}{3+m^2}\Rightarrow y=\)\(\dfrac{m\left(5+2m\right)}{3+m^2}-2=\dfrac{5m-6}{3+m^2}\)

Suy ra với mọi m thì hệ luôn có nghiệm duy nhất \(\left(x;y\right)=\left(\dfrac{5+2m}{3+m^2};\dfrac{5m-6}{3+m^2}\right)\)

Có \(x+y=0\Leftrightarrow\dfrac{5+2m}{3+m^2}+\dfrac{5m-6}{3+m^2}=0\)\(\Rightarrow m=\dfrac{1}{7}\)

Vậy ...

Δ=(-2)^2-4(m-5)

=4-4m+20=24-4m

Để phương trình có hai nghiệm thì -4m+24>=0

=>m<=6

x2^2-2x1+m^2-11m+26=0

=>x2^2+x1(x1+x2)+m^2-11m+26=0

=>x2^2+x1^2+x1x2+m^2-11m+26=0

=>(x1+x2)^2-x1x2+m^2-11m+26=0

=>(-2)^2-m+5+m^2-11m+26=0

=>m^2-12m+35=0

=>m=7(loại) hoặc m=5(nhận)

17 tháng 10 2019

\(y\in\left(-\infty;\infty\right)\)

\(-2y^2-3xy-2y+2x^2+6x=1\)

\(-2y^2-3xy-2y-2x^2+6x-1=0\)

\(-2y^2-\left(3x+2\right)y+2x^2+6x-1=0\)

\(y=\frac{\sqrt{25x^2+60x-4-3x-2}}{4}\)

\(y=-\frac{\sqrt{25x^2+60x-4+3x+2}}{4}\)

#Ứng Lân

NV
14 tháng 10 2019

a/ \(\Leftrightarrow2x^2-\left(3y-6\right)x-2y^2-2y-1=0\) (1)

\(\Delta=\left(3y-6\right)^2+8\left(2y^2+2y+1\right)=\left(5y-2\right)^2+40\)

Để (1) có nghiệm nguyên thì \(\Delta\) là số chính phương

\(\Rightarrow\left(5y-2\right)^2+40=k^2\) với \(k\in Z\)

\(\Rightarrow k^2-\left(5y-2\right)^2=40\)

\(\Rightarrow\left(k+5y-2\right)\left(k-5y+2\right)=40\)

Do \(\left(k+5y-2\right)+\left(k-5y+2\right)=2k\) chẵn nên chúng cùng tính chẵn lẻ

Vậy ta chỉ cần xét các cặp ước cùng tính chẵn lẻ của 40 là (dài quá, bạn tự xét)

NV
14 tháng 10 2019

b/ \(\Leftrightarrow2x^2+4x+2=21-3y^2\)

\(\Leftrightarrow2\left(x+1\right)^2=3\left(7-y^2\right)\)

Do vế trái chẵn và không âm \(\Rightarrow\) vế phải chẵn và không âm

\(\Rightarrow y^2\) lẻ và \(y^2\le7\Rightarrow y^2=\left\{0;1;4\right\}\)

\(\Rightarrow y^2=1\Rightarrow\left[{}\begin{matrix}y=1\\y=-1\end{matrix}\right.\)

\(\Rightarrow2\left(x+1\right)^2=18\)

\(\Rightarrow\left(x+1\right)^2=9\Rightarrow\left[{}\begin{matrix}x+1=3\\x+1=-3\end{matrix}\right.\)