Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
******************************************************
a) \(x^3-5x^2+8x-4=x^3-x^2-4x^2+4x+4x-4\)
\(=x^2\left(x-1\right)-4x\left(x-1\right)+4\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2-4x+4\right)=\left(x-1\right)\left(x-2\right)^2\)
b) \(x^3-3x+2=x^3+2x^2-2x^2-4x+x+2\)
\(=x^2\left(x+2\right)-2x\left(x+2\right)+\left(x+2\right)\)
\(=\left(x+2\right)\left(x^2-2x+1\right)=\left(x+2\right)\left(x-1\right)^2\)
c) \(x^3-5x^2+3x+9=x^3+x^2-6x^2-6x+9x+9\)
\(=x^2\left(x+1\right)-6x\left(x+1\right)+9\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-6x+9\right)=\left(x+1\right)\left(x-3\right)^2\)
d) \(x^3+8x^2+17x+10=x^3+2x^2+6x^2+12x+5x+10\)
\(=x^2\left(x+2\right)+6x\left(x+2\right)+5\left(x+2\right)\)
\(=\left(x+2\right)\left(x^2+6x+5\right)=\left(x+2\right)\left(x+5\right)\left(x+1\right)\)
e) \(x^3+3x^2+6x+4=x^3+x^2+2x^2+2x+4x+4\)
\(=x^2\left(x+1\right)+2x\left(x+1\right)+4\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2+2x+4\right)\)
f) \(x^3+3x^2+3x+2=x^3+2x^2+x^2+2x+x+2\)
\(=x^2\left(x+2\right)+x\left(x+2\right)+\left(x+2\right)\)
\(=\left(x+2\right)\left(x^2+x+1\right)\)
thôi mình cứ làm đi,để cho mình ôn lại kiến và giúp bạn ấy học nữa .
1) \(\left(3x^2-3y^2\right)-\left(12x-12y\right)\)
\(=3xy\left(x-y\right)-12\left(x-y\right)\)
\(=\left(3xy-12\right)\left(x-y\right)\)
2) \(4x^3+4xy^2+8x^2y-16x\)
\(=\left(4x^3-16x\right)+\left(4xy^2+8x^2y\right)\)
\(=4x\left(x^2-4\right)+4xy\left(y+2x\right)\)
Ta có : 3x2 - 3y2 - 12x + 12y
= (3x2 - 3y2) - (12x - 12y)
= 3(x2 - y2) - 12(x - y)
= 3(x - y)(x + y) - 4.3.(x - y)
= 3(x - y)(x + y - 4)
Câu 1:
\(\dfrac{x^2-10x+21}{x^3-7x^2+x-7}=\dfrac{\left(x-7\right)\left(x-3\right)}{\left(x-7\right)\left(x^2+1\right)}=\dfrac{x-3}{x^2+1}\)
\(\dfrac{2x^2-x-15}{2x^3+5x^2+2x+5}=\dfrac{2x^2-6x+5x-15}{\left(2x+5\right)\left(x^2+1\right)}=\dfrac{\left(2x+5\right)\left(x-3\right)}{\left(2x+5\right)\left(x^2+1\right)}=\dfrac{x-3}{x^2+1}\)
Do đó: \(\dfrac{x^2-10x+21}{x^3-7x^2+x-7}=\dfrac{2x^2-x-15}{2x^3+5x^2+2x+5}\)
a, 8x2+10x =2x.(4x+5)
b, 4x2-8x+4 =4.(x2 -2x+1)=4.(x-1)2
c, 3x2 -3xy -5x +5y =(3x2-5x) - (3xy-5y) = x.(3x-5)- y.(3x-5)= (x-y).(3x-5)
d, x2+ 4x- 45=x2+ 9x- 5x- 45= x.(x+9)- 5.(x+9)=(x-5).(x+9)
a , 8 x 2 + 10 x
= 2 x ( 4 x + 5 )
b , 4 x 2 - 8 x + 4
= ( 2x ) 2 - 2 . 2 x . 2 + 2 2
= ( 2x + 2 ) 2
c ) 3 x 2 - 3 x y - 5 x + 5 y
= 3 x ( x - y ) - 5 ( x - y )
= ( 3x - 5 ) ( x - y )
d ) x 2 + 4x - 45
= x 2 + 2 x . 2 + 4 - 49
= ( x + 2 ) 2 - 49
= ( x + 2 ) 2 - 7 2
= ( x + 2 - 7 ) ( x + 2 + 7)
= ( x - 5 ) ( x + 9 )
Sử dụng định lý Bezout:
a/ \(g\left(x\right)=0\Rightarrow\left\{{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
\(f\left(x\right)⋮g\left(x\right)\Rightarrow\left\{{}\begin{matrix}f\left(1\right)=0\\f\left(2\right)=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+b=1\\2a+b=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=3\\b=-2\end{matrix}\right.\)
b/ \(g\left(x\right)=0\Rightarrow x=-1\)
\(\Rightarrow f\left(-1\right)=0\Rightarrow-a+b=2\Rightarrow b=a+2\)
Tất cả các đa thức có dạng \(f\left(x\right)=2x^3+ax+a+2\) đều chia hết \(g\left(x\right)=x+1\) với mọi a
c/ \(g\left(x\right)=0\Rightarrow x=-2\Rightarrow f\left(-2\right)=0\Rightarrow4a+b=-30\)
\(2x^4+ax^2+x+b=\left(x^2-1\right).Q\left(x\right)+x\)
Thay \(x=1\Rightarrow a+b=-2\)
\(\Rightarrow\left\{{}\begin{matrix}4a+b=-30\\a+b=-2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-\frac{28}{3}\\b=\frac{22}{3}\end{matrix}\right.\)
d/ Tương tự: \(\left\{{}\begin{matrix}f\left(2\right)=8a+4b-40=0\\f\left(-5\right)=-125a+25b-75=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\\b=\end{matrix}\right.\)
3x(x-2)-5x(1-x)-8x2-3
= 3x2-6x-5x+5x2-8x2-3
= -11x-3
3x(x-2)-5x(1-x)-8x2-3
=3x2-6x-5x+5x2-8x2-3
=-1x-3