K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 11 2018

\(3x+5=289\)

\(\Leftrightarrow x\approx94,7\)

2 tháng 6 2016

x = 2/3

y = -1
11 tháng 10 2021

a: \(f\left(-x\right)=-2\cdot\left(-x\right)^3+3\cdot\left(-x\right)\)

\(=2x^3-3x\)

\(=-\left(-2x^3+3x\right)\)

=-f(x)

Vậy: f(x) là hàm số lẻ

c: TXĐ: D=[-2;2]

Nếu \(x\in D\Leftrightarrow-x\in D\)

\(f\left(-x\right)=\sqrt{6-3\cdot\left(-x\right)}-\sqrt{6+3\cdot\left(-x\right)}\)

\(=\sqrt{6+3x}-\sqrt{6-3x}\)

\(=-f\left(x\right)\)

Vậy: f(x) là hàm số lẻ

11 tháng 10 2021

Còn b,d thì làm sao v ạ.

9 tháng 8 2019

\(A=cos^21+coss^22+...+cos^288+cos^289-\frac{1}{2}\)

\(A=1-sin^21+1-sin^22+...+1-sin^244+cos^245+cos^246+...+cos^289-\frac{1}{2}\)

\(A=1\cdot44+cos^245-\frac{1}{2}\)

\(A=44\)

B=\(sin^21+sin^22+...+sin^289-\frac{1}{2}\)

\(B=1-cos^21+1-cos^22+...+sin^245+sin^246+....+sin^289-\frac{1}{2}\)

\(B=1\cdot44+sin^245-\frac{1}{2}=44\)

9 tháng 8 2019

\(C=tan^21\cdot tan^22\cdot...\cdot tan^288+tan^289\)

\(C=tan^21\cdot\left(tan^22\cdot tan^288\right)\cdot...\cdot\left(tan^244\cdot tan^246\right)\cdot tan^245+tan^289\)

\(C=tan^21+tan^289\approx3282\)

D = \(\left(tan^21:cot^289\right)+...+\left(tan^244:tan^246\right)+tan^245\)

\(D=\left(tan^21\cdot tan^289\right)+...+\left(tan^244\cdot tan^246\right)+tan^245\)

\(D=1+...+1+1\)

ta thấy từ 1 đến 89 có 89 số hạng, trong đó có 44 cặp.

vậy D = 45

30 tháng 4 2016

Bạn xem lời giải của mình nhé:

Giải:

\(A=\left(-\frac{4}{5}+\frac{4}{3}\right)+\left(-\frac{5}{4}+\frac{14}{5}\right)-\frac{7}{3}\)

\(=-\frac{4}{5}+\frac{4}{3}-\frac{5}{4}+\frac{14}{5}-\frac{7}{3}\)

\(=\left(\frac{14}{5}-\frac{4}{5}\right)-\left(\frac{7}{3}-\frac{4}{3}\right)+\frac{14}{5}\\ =\frac{10}{5}-\frac{3}{3}+2\frac{4}{5}\\ =2-1+2\frac{4}{5}\\ =3\frac{4}{5}\)

Chúc bạn học tốt!hihi

30 tháng 4 2016

bạn ơi khi phá ngoặc ra thì phải đổi dấu chứ

23 tháng 5 2021

\(3x^2-2\left(m+1\right)x+3m-5=0\)

Xét \(\Delta=4\left(m+1\right)^2-4.3.\left(3m-5\right)\)\(=4m^2-28m+64=4\left(m-\dfrac{7}{2}\right)^2+15>0\forall m\)

=> pt luôn có hai nghiệm pb

Kết hợp viet và giả thiết có hệ: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m+1\right)}{3}\\x_1=3x_2\\x_1x_2=\dfrac{3m-5}{3}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x_2+x_2=\dfrac{2m+2}{3}\\x_1=3x_2\\x_1x_2=\dfrac{3m-5}{3}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{m+1}{6}\\x_1=\dfrac{m+1}{2}\\x_1x_2=\dfrac{3m-5}{3}\end{matrix}\right.\)

\(\Rightarrow\dfrac{\left(m+1\right)}{6}.\dfrac{\left(m+1\right)}{2}=\dfrac{3m-5}{3}\)\(\Leftrightarrow m^2-10m+21=0\) \(\Leftrightarrow\left[{}\begin{matrix}m=7\\m=3\end{matrix}\right.\)

Tại m=7 thay vào pt ta tìm được \(\left[{}\begin{matrix}x=4\\x=\dfrac{4}{3}\end{matrix}\right.\)

Tại m=3 thay vào pt ta tìm được \(\left[{}\begin{matrix}x=2\\x=\dfrac{2}{3}\end{matrix}\right.\)