Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ giả thiết suy ra
\(\left(x-1\right)\left(y-1\right)+\left(y-1\right)\left(z-1\right)+\left(z-1\right)\left(x-1\right)\ge0\)
\(\Leftrightarrow xy+yz+zx\ge2\left(x+y+z\right)-3\) (1)
Lại có \(3x^2+4y^2+5z^2=52\)
\(\Leftrightarrow5\left(x^2+y^2+z^2\right)=52+2x^2+y^2\ge52+2.1+1=55\)
\(\Rightarrow x^2+y^2+z^2\ge11\) (2)
Từ (1) và (2) ta có \(\left(x+y+z\right)^2=\left(x^2+y^2+z^2\right)+2\left(xy+yz+zx\right)\ge11+4\left(x+y+z\right)-6\)
\(\Leftrightarrow\left(x+y+z\right)^2-4\left(x+y+z\right)-5\ge0\)
\(\Leftrightarrow P^2-4P-5\ge0\)
\(\Leftrightarrow\left(P+1\right)\left(P-5\right)\ge0\)
\(\Rightarrow P\ge5\)
Vậy \(P_{min}=5\) \(\Leftrightarrow\hept{\begin{cases}x=1\\y=1\\z=3\end{cases}}\)
1) Đặt \(\dfrac{b\sqrt{a-1}+a\sqrt{b-1}}{ab}\) là A
\(\)\(A=\dfrac{\sqrt{a-1}}{a}+\dfrac{\sqrt{b-1}}{b}\)
\(\left(\dfrac{\sqrt{a-1}}{a}\right)^2=\dfrac{a-1}{a^2}=\dfrac{1}{a}-\dfrac{1}{a^2}=\dfrac{1}{a}\left(1-\dfrac{1}{a}\right)\)
\(\Rightarrow\)\(\dfrac{\sqrt{a-1}}{a}=\sqrt{\dfrac{1}{a}\left(1-\dfrac{1}{a}\right)}\)
Tương tự: \(\dfrac{\sqrt{b-1}}{b}=\sqrt{\dfrac{1}{b}\left(\dfrac{1}{b}-1\right)}\)
Áp dụng BĐT Cauchy, ta có:
\(\sqrt{\dfrac{1}{a}\left(1-\dfrac{1}{a}\right)}\le\dfrac{\dfrac{1}{a}+\left(1-\dfrac{1}{a}\right)}{2}=\dfrac{1}{2}\)
Tương tự: \(\sqrt{\dfrac{1}{b}\left(\dfrac{1}{b}-1\right)}\le\dfrac{1}{2}\)
Cộng vế theo vế của 2 BĐT vừa chứng minh, ta được:
\(A\le1\left(đpcm\right)\)
Xét: \(a^2+\dfrac{2}{a^3}=\dfrac{1}{3}a^2+\dfrac{1}{3}a^2+\dfrac{1}{3}a^2+\dfrac{1}{a^3}+\dfrac{1}{a^3}\left(1\right)\)
Áp dụng BĐT Cauchy cho 5 số dương trên, ta có: \(\left(1\right)\ge5\sqrt[5]{\dfrac{1}{3}a^2.\dfrac{1}{3}a^2.\dfrac{1}{3}a^2.\dfrac{1}{a^3}.\dfrac{1}{a^3}}=5\sqrt[5]{\dfrac{1}{27}}=\dfrac{5\sqrt[5]{9}}{3}\left(đpcm\right)\)
Dấu ''='' xảy ra khi và chỉ khi \(\dfrac{1}{3}a^2=\dfrac{1}{a^3}\Leftrightarrow a=\sqrt[5]{3}\)
áp dụng bất dẳng thức bunhiacopxki
\(\left(3x+1.y\right)^2\le\left(3^2+1^2\right)\left(x^2+y^2\right)\Leftrightarrow10\left(x^2+y^2\right)\ge\left(3x+y\right)^2\)
\(\Leftrightarrow10\left(x^2+y^2\right)\ge\left(3x+y\right)^2\ge1^2\left(do3x+y\ge1\right).\)
\(\Rightarrow\left(x^2+y^2\right)\ge\frac{1}{10}.\)
Vậy min \(x^2+y^2=\frac{1}{10}\)
Bài 1:
b: \(\Leftrightarrow2+\sqrt{3x-5}=x+1\)
\(\Leftrightarrow\sqrt{3x-5}=x-1\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2-2x+1=3x-5\\x>=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2-5x+6=0\\x>=1\end{matrix}\right.\Leftrightarrow x\in\left\{2;3\right\}\)
c: \(\Leftrightarrow5x+7=16\left(x+3\right)\)
=>16x+48=5x+7
=>11x=-41
hay x=-41/11
Ta có: \(3x+4y=5\)
\(\Leftrightarrow x=\frac{5-4y}{3}\)
Ta cần chứng minh:
\(x^2+y^2\ge1\)
\(\Leftrightarrow\left(\frac{5-4y}{3}\right)^2+y^2-1\ge0\)
\(\Leftrightarrow25y^2-40y+16\ge0\)
\(\Leftrightarrow\left(5y-4\right)^2\ge0\)(đúng)
Ta có : \(3x+4y=5\Rightarrow y=\frac{5-3x}{4}\)
\(\Rightarrow x^2+y^2=x^2+\frac{\left(5-3x\right)^2}{16}=x^2+\frac{9x^2-30x+25}{16}\)
\(=\frac{16x^2+9x^2-30x+25}{16}=\frac{25x^2-30x+25}{16}=\frac{\left(25x^2-30x+9\right)+16}{16}\)
\(=\frac{\left(5x-3\right)^2+16}{16}\ge\frac{16}{16}=1\)(đpcm)